Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 296(1): 365-9, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16212974

ABSTRACT

We have studied the effect of adding a water-soluble polymers (PEG) to the lamellar phases of the ternary system tetradecyldimethylaminoxide (C14DMAO)-hexanol-water. The results of Freeze-Fracture Electron Microscopy (FFEM) and Small Angle X-ray Scattering (SAXS) experiments show that the addition of the polymer induces the spontaneous formation of highly monodisperse multilayered vesicles above a threshold polymer concentration.

2.
Proc Natl Acad Sci U S A ; 101(43): 15279-84, 2004 Oct 26.
Article in English | MEDLINE | ID: mdl-15492229

ABSTRACT

The incorporation of lipophilic ligands into the bilayer membrane of vesicles offers the possibility to induce, upon binding of suitable metal ions, a variety of processes, in particular vesicle aggregation and fusion and generation of vesicle arrays, under the control of specific metal-ligand recognition events. Synthetic bipyridine lipoligands Bn bearing a bipyridine unit as head group were prepared and incorporated into large unilamellar vesicles. The addition of Ni2+ or Co2+ metal ions led to the formation of complexes MBn and MBn2 followed by spontaneous fusion to generate giant multilamellar vesicles. The metal ion complexation was followed by UV spectroscopy and the progressive fusion could be visualized by optical dark-field and fluorescence microscopies. Vesicle fusion occurred without leakage of the aqueous compartments and resulted in the formation of multilamellar giant vesicles because of the stacking of the lipoligands Bn. The fusion process required a long enough oligoethylene glycol spacer and a minimal concentration of lipoligand within the vesicle membrane. Metallosupramolecular systems such as the present one offer an attractive way to induce selective intervesicular processes, such as vesicle fusion, under the control of molecular recognition between specific metal ions and lipoligands incorporated in the bilayer membrane. They provide an approach to the design of artificial "tissue-mimetics" through the generation of polyvesicular arrays of defined architecture and to the control of their functional properties.


Subject(s)
Metals/metabolism , Calorimetry, Differential Scanning , Cations , Ligands , Light , Lipid Bilayers , Magnetic Resonance Spectroscopy , Microscopy, Fluorescence , Scattering, Radiation , Spectrophotometry, Ultraviolet
3.
Chemistry ; 10(9): 2342-50, 2004 May 03.
Article in English | MEDLINE | ID: mdl-15112223

ABSTRACT

The aim of the present work was to design functionalized lipidic membranes that can selectively interact with lanthanide ions at the interface and to exploit the interaction between membranes induced by this molecular-recognition process with a view to building up self-assembled vesicles or controlling the permeability of the membrane to lanthanide ions. Amphiphilic molecules bearing a beta-diketone unit as head group were synthesized and incorporated into phospholipidic vesicles. Binding of Eu(III) ions to the amphiphilic ligand can lead to formation of a complex involving ligands of the same vesicle membrane (intravesicular complex) or of two different vesicles (intervesicular complex). The effect of Eu(III) ions on vesicle behavior was studied by complementary techniques such as fluorimetry, light scattering, and electron microscopy. The formation of an intravesicular luminescent Eu/beta-diketone ligand (1/2) complex was demonstrated. The linear increase in the binding constant with increasing concentration of ligands in the membrane revealed a cooperative effect of the ligands distributed in the vesicle membrane. The luminescence of this complex can be exploited to monitor the kinetics of complexation at the interface of the vesicles, as well as ion transport across the membrane. By encapsulation of 2,6-dipicolinic acid (DPA) as a competing ligand which forms a luminescent Eu/DPA complex, the kinetics of ion transport across the membrane could be followed. These functional vesicles were shown to be an efficient system for the selective transport of Eu(III) ions across a membrane with assistance by beta-diketone ligands.

4.
Proc Natl Acad Sci U S A ; 100(18): 10258-62, 2003 Sep 02.
Article in English | MEDLINE | ID: mdl-12930900

ABSTRACT

The controlled self-assembly of complex molecules into well defined hierarchical structures is a promising route for fabricating nanostructures. These nanoscale structures can be realized by naturally occurring proteins such as tobacco mosaic virus, capsid proteins, tubulin, actin, etc. Here, we report a simple alternative method based on self-assembling nanotubes formed by a synthetic therapeutic octapeptide, Lanreotide in water. We used a multidisciplinary approach involving optical and electron microscopies, vibrational spectroscopies, and small and wide angle x-ray scattering to elucidate the hierarchy of structures exhibited by this system. The results revealed the hexagonal packing of nanotubes, and high degree of monodispersity in the tube diameter (244 A) and wall thickness (approximately equal to 18 A). Moreover, the diameter is tunable by suitable modifications in the molecular structure. The self-assembly of the nanotubes occurs through the association of beta-sheets driven by amphiphilicity and a systematic aromatic/aliphatic side chain segregation. This original and simple system is a unique example for the study of complex self-assembling processes generated by de novo molecules or amyloid peptides.


Subject(s)
Capsid/chemistry , Peptides, Cyclic/chemistry , Somatostatin/analogs & derivatives , Somatostatin/chemistry , Biomimetics , Models, Molecular , Protein Conformation , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...