Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; 88(8): e202300078, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36824017

ABSTRACT

Phosphaalumenes are the heavier isoelectronic analogs of alkynes and have eluded facile synthesis until recently. We have reported that the combination of a phosphinidene transfer agent, Ar TerP(PMe3 ) (Ar Ter=2,6-Ar2 -C6 H3 ), with (Cp*Al)4 (Cp*=C5 (CH3 )5 ) afforded the phosphaalumenes Ar TerPAlCp* as isolable, violet, thermally stable compounds. In here we describe attempts to utilize Mes*P(PMe3 ) (Mes*=2,4,6-tBu3 -C6 H2 ) as a phosphinidene source in combination with different Al(I) precursors, namely Dip NacnacAl (Dip Nacnac=HC[C(Me)NDip]2 , Dip=2,6-iPr2 -C6 H3 ), (Cp*Al)4 and Cp3t Al (Cp3t =1,2,4-tBu3 -C5 H2 ). In all cases the formation of phosphaalumenes was not observed, however, their intermediate formation is indicated by formation of the dimer [Cp*Al(µ-PMes*)]2 (2) and C-H-bond activation products along the putative P=Al bond, giving unusual 1,2-P,Al-tetrahydronaphtalene derivatives 1 and 4, clearly underlining the role the sterically demanding group on phosphorus plays in these transformations. The reactivity studies are supported by theoretical studies, demonstrating a thermodynamic preference for the C-H activation products. Additionally, we show that there are potential pitfalls in the synthesis of Cp*2 AlH, the precursor to make (Cp*Al)4 and give recommendations how to circumvent these.

SELECTION OF CITATIONS
SEARCH DETAIL
...