Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Science ; 374(6570): 968-972, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34709937

ABSTRACT

Jupiter's atmosphere has a system of zones and belts punctuated by small and large vortices, the largest being the Great Red Spot. How these features change with depth is unknown, with theories of their structure ranging from shallow meteorological features to surface expressions of deep-seated convection. We present observations of atmospheric vortices using the Juno spacecraft's Microwave Radiometer. We found vortex roots that extend deeper than the altitude at which water is expected to condense, and we identified density inversion layers. Our results constrain the three-dimensional structure of Jupiter's vortices and their extension below the clouds.

2.
Science ; 356(6340): 821-825, 2017 05 26.
Article in English | MEDLINE | ID: mdl-28546206

ABSTRACT

On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter's poles show a chaotic scene, unlike Saturn's poles. Microwave sounding reveals weather features at pressures deeper than 100 bars, dominated by an ammonia-rich, narrow low-latitude plume resembling a deeper, wider version of Earth's Hadley cell. Near-infrared mapping reveals the relative humidity within prominent downwelling regions. Juno's measured gravity field differs substantially from the last available estimate and is one order of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter's core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content.

3.
Nature ; 415(6875): 987-91, 2002 Feb 28.
Article in English | MEDLINE | ID: mdl-11875557

ABSTRACT

Ground-based observations have shown that Jupiter is a two-component source of microwave radio emission: thermal atmospheric emission and synchrotron emission from energetic electrons spiralling in Jupiter's magnetic field. Later in situ measurements confirmed the existence of Jupiter's high-energy electron-radiation belts, with evidence for electrons at energies up to 20[?]MeV. Although most radiation belt models predict electrons at higher energies, adiabatic diffusion theory can account only for energies up to around 20[?]MeV. Unambiguous evidence for more energetic electrons is lacking. Here we report observations of 13.8[?]GHz synchrotron emission that confirm the presence of electrons with energies up to 50[?]MeV; the data were collected during the Cassini fly-by of Jupiter. These energetic electrons may be repeatedly accelerated through an interaction with plasma waves, which can transfer energy into the electrons. Preliminary comparison of our data with model results suggests that electrons with energies of less than 20[?]MeV are more numerous than previously believed.

5.
Science ; 268(5219): 1879-83, 1995 Jun 30.
Article in English | MEDLINE | ID: mdl-11536723

ABSTRACT

Jupiter's nonthermal microwave emission, as measured by a global network of 11 radio telescopes, increased dramatically during the Shoemaker-Levy 9 impacts. The increase was wavelength-dependent, varying from approximately 10 percent at 70 to 90 centimeters to approximately 45 percent at 6 and 36 centimeters. The radio spectrum hardened (flattened toward shorter wavelengths) considerably during the week of impacts and continued to harden afterward. After the week of cometary impacts, the flux density began to subside at all wavelengths and was still declining 3 months later. Very Large Array and Australia Telescope images of the brightness distribution showed the enhancement to be localized in longitude and concentrated near the magnetic equator. The evidence therefore suggests that the increase in flux density was caused by a change in the resident particle population, for example, through an energization or spatial redistribution of the emitting particles.


Subject(s)
Electrons , Jupiter , Meteoroids , Microwaves , Astronomical Phenomena , Astronomy , Cosmic Dust , Elementary Particle Interactions , Spectrum Analysis
6.
Acta Astronaut ; 26(3-4): 177-84, 1992.
Article in English | MEDLINE | ID: mdl-11537160

ABSTRACT

The Sky Survey observing program is one of two complementary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the Sky Survey is to search the entire sky over the frequency range 1000-10,000 MHz for evidence of narrow band signals of extraterrestrial, intelligent origin. Spectrum analyzers with upwards of 10 million channels and data rates in excess of 10 gigabits per second are required to complete the survey in less than 7 years. To lay the foundation for the operational SETI Sky Survey, a prototype system has been built to test and refine real time signal detection algorithms, to test scan strategies and observatory control functions, and to test algorithms designed to reject radio frequency interference. This paper presents a high level description of the prototype hardware and software and reports on the preparations to deploy the system to the 34-m antenna at the research and development station of NASA's Deep Space Communication Complex, Goldstone, California.


Subject(s)
Exobiology/instrumentation , Extraterrestrial Environment , Microwaves , Communication , Equipment Design , Exobiology/methods , Exobiology/trends , Radio Waves , Signal Processing, Computer-Assisted/instrumentation , Software , United States , United States National Aeronautics and Space Administration
7.
Acta Astronaut ; 26(3-4): 227-32, 1992.
Article in English | MEDLINE | ID: mdl-11537163

ABSTRACT

Investigations are carried out at JPL on radiofrequency interferences at very low levels (-130 to -180 dBm) in various bands, especially the 1-2 GHz band. Extrapolation of interferences in the years to come is attempted.


Subject(s)
Exobiology/methods , Extraterrestrial Environment , Microwaves , Communication , Earth, Planet , Radio Waves , United States , United States National Aeronautics and Space Administration
8.
Astrophys Space Sci ; 177: 79-83, 1991.
Article in English | MEDLINE | ID: mdl-11538705

ABSTRACT

An overview is presented of a number of astrometry and astrophysics programs based on radio sources from the Parkes 2.7 GHz catalogues. The programs cover the optical identification and spectroscopy of flat-spectrum Parkes sources and the determination of their milliarc-second radio structures and positions. Work is also in progress to tie together the radio and Hipparcos positional reference frames. A parallel program of radio and optical astrometry of southern radio stars is also under way.


Subject(s)
Astronomy , Radio Waves , Solar System , Astronomical Phenomena , Australia , Optics and Photonics , South Africa
9.
Science ; 246(4936): 1498-501, 1989 Dec 15.
Article in English | MEDLINE | ID: mdl-17756007

ABSTRACT

Detection of very intense short radio bursts from Neptune was possible as early as 30 days before closest approach and at least 22 days after closest approach. The bursts lay at frequencies in the range 100 to 1300 kilohertz, were narrowband and strongly polarized, and presumably originated in southern polar regions ofthe planet. Episodes of smooth emissions in the frequency range from 20 to 865 kilohertz were detected during an interval of at least 10 days around closest approach. The bursts and the smooth emissions can be described in terms of rotation in a period of 16.11 +/- 0.05 hours. The bursts came at regular intervals throughout the encounter, including episodes both before and after closest approach. The smooth emissions showed a half-cycle phase shift between the five episodes before and after closest approach. This experiment detected the foreshock of Neptune's magnetosphere and the impacts of dust at the times of ring-plane crossings and also near the time of closest approach. Finally, there is no evidence for Neptunian electrostatic discharges.

10.
Acta Astronaut ; 19(11): 919-25, 1989.
Article in English | MEDLINE | ID: mdl-11537748

ABSTRACT

The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.


Subject(s)
Astronomy/instrumentation , Exobiology/instrumentation , Microwaves , Spectrum Analysis/instrumentation , Communication , Exobiology/methods , Extraterrestrial Environment , Radio Waves
11.
J Geophys Res ; 92(A13): 15159-68, 1987 Dec 30.
Article in English | MEDLINE | ID: mdl-11542131

ABSTRACT

Observations of kilometric radiation from Uranus made with the planetary radio astronomy experiment on the Voyager 2 spacecraft are presented and discussed. Similarities between the auroral kilometric radiation from Earth and the observed Uranus emission are pointed out. A geometrical beaming model is developed in which a single distributed source is located above the darkside auroral region and emits in the extraordinary mode by the cyclotron maser process. The model can account for nearly all the Uranian kilometric radiation from the high-frequency limit near 850 kHz down to about 150 kHz and for much of it down to the lower limit of 20 kHz.


Subject(s)
Magnetics , Models, Theoretical , Radio Waves , Space Flight/instrumentation , Uranus , Astronomical Phenomena , Astronomy , Cyclotrons , Extraterrestrial Environment
12.
Mon Not R Astron Soc ; 225: 491-8, 1987.
Article in English | MEDLINE | ID: mdl-11540900

ABSTRACT

High-resolution OH 1612-MHz spectra are presented of the supergiant OH-IR sources VY CMa, VX Sgr, IRC 10420 and NML Cyg. The spectra have a resolution of 300 Hz. Narrow components in the spectra have linewidths as small as 550 Hz (0.1 km s-1) but there is no evidence for components narrower than this. These results are in accord with present understanding of maser line-narrowing and of the physical conditions in the OH maser regions. Many of the narrow components have an appreciable degree of circular polarization which is not apparent at the lower frequency resolutions usually employed. The circular polarization indicates the presence of magnetic fields of approximately 1 mG in the circumstellar envelopes, at distances of approximately 3x10(16) cm from the central stars. These fields are strong enough to influence the outflow from the stars, and may help to explain some of the asymmetries which are seen in their circumstellar envelopes.


Subject(s)
Astronomy , Extraterrestrial Environment , Hydroxyl Radical/analysis , Astronomical Phenomena , Electromagnetic Phenomena , Magnetics , Spectrum Analysis
13.
Science ; 233(4759): 102-6, 1986 Jul 04.
Article in English | MEDLINE | ID: mdl-17812898

ABSTRACT

Within distances to Uranus of about 6 x 10(6) kilometers (inbound) and 35 x 10(6) kilometers (outbound), the planetary radio astronomy experiment aboard Voyager 2 detected a wide variety of radio emissions. The emission was modulated in a period of 17.24 +/- 0.01 hours, which is identified as the rotation period of Uranus' magnetic field. Of the two poles where the axis of the off-center magnetic dipole (measured by the magnetometer experiment aboard Voyager 2) meets the planetary surface, the one closer to dipole center is now located on the nightside of the planet. The radio emission generally had maximum power and bandwidth when this pole was tipped toward the spacecraft. When the spacecraft entered the nightside hemisphere, which contains the stronger surface magnetic pole, the bandwidth increased dramatically and thereafter remained large. Dynamically evolving radio events of various kinds embedded in these emissions suggest a Uranian magnetosphere rich in magnetohydrodynamic phenomena.

14.
Science ; 221(4609): 453-5, 1983 Jul 29.
Article in English | MEDLINE | ID: mdl-17755479

ABSTRACT

Radio astronomical observations of Uranus show that the radio emission spectrum is evolving in time. Ammonia vapor must be depleted in the Uranian atmosphere as Gulkis and his co-workers previously suggested. Since 1965, ammonia either has been decreasing in time or is a decreasing function of latitude, or both, provided that the radio emission is atmospheric in origin. If Uranus has an observable low-emissivity "surface," these trends may be reversed. The microwave observations made in 1965, at the time when the spin axis of Uranus was nearly perpendicular to the sun-Uranus line, are consistent with an atmospheric opacity profile that would be produced by saturated ammonia vapor in a predominantly hydrogen atmosphere. At the present time, when the spin axis of Uranus is nearly aligned with the sun-Uranus line, the measurements require an opacity that would be produced by saturated water vapor. A large thermal gradient between the pole and equator is ruled out.

15.
Science ; 211(4483): 700-2, 1981 Feb 13.
Article in English | MEDLINE | ID: mdl-17776650

ABSTRACT

High-precision measurements of total solar irradiance, made by the active cavity radiometer irradiance monitor on the Solar Maximum Mission satellite, show the irradiance to have been variable throughout the first 153 days of observations. The corrected data resolve orbit-to-orbit variations with uncertainties as small as 0.001 percent. Irradiance fluctuations are typical of a band-limited noise spectrum with high-frequency cutoff near 0.15 day(-1) their amplitudes about the mean value of 1368.31 watts per square meter approach +/- 0.05 percent. Two large decreases in irrradiance of up to 0.2 percent lasting about 1 week are highly correlated with the development of sunspot groups. The magnitude and time scale of the irradiance variability suggest that considerable energy storage occurs within the convection zone in solar active regions.

16.
Science ; 206(4421): 991-5, 1979 Nov 23.
Article in English | MEDLINE | ID: mdl-17733921

ABSTRACT

The Voyager 2 Planetary Radio Astronomy experiment to Jupiter has confirmed and extended to higher zenomagnetic latitudes results from the identical experiment carried by Voyager 1. The kilometric emissions discovered by Voyager 1 often extended to 1 megahertz or higher on Voyager 2 and often consisted of negatively or, less frequently, positively drifting narrowband bursts. On the basis of tentative identification of plasma wave emissions similar to those detected by Voyager 1, the plasma torus associated with Io appeared somewhat denser to Voyager 2 than it did to Voyager 1. We report here on quasiperiodic sinusoidal or impulsive bursts in the broadcast band range of wavelengths (800 to 1800 kilohertz). A Faraday effect appears at decametric frequencies, which probably results from propagation of the radiation near its sources on Jupiter. Finally, we discuss the occurrence of decametric emission in homologous arc families.

17.
Science ; 204(4396): 995-8, 1979 Jun 01.
Article in English | MEDLINE | ID: mdl-17800438

ABSTRACT

We report results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere. We obtained dramatic new information, both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio spectral arcs, from above 30 to about 1 megahertz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Detailed studies are in progress and are out-lined briefly.

18.
Science ; 199(4328): 485-92, 1978 Feb 03.
Article in English | MEDLINE | ID: mdl-17749999

ABSTRACT

The microwave region of the electromagnetic spectrum, a plausible regime for signals from extraterrestrial intelligences, is largely unexplored. With new technology, particularly in data processing and low-noise reception, surveys can be conducted over broad regions of frequency and space with existing antennas at flux densities plausible for interstellar signals. An all-sky, broad-band survey lasting perhaps 5 years can be structured so that even negative results would establish significant boundaries on the regime in which such signals may be found. The technology and techniques developed and much of the data acquired would be applicable to radio astronomy and deep-space communications.

19.
Science ; 154(3746): 257-9, 1966 Oct 14.
Article in English | MEDLINE | ID: mdl-17810304

ABSTRACT

The results of observations of Jupiter at 18 megacycles per second indicate that the apparent rotation period drifts cyclically about a constant mean value. The most probable drift period appears to be 11.9 years, Jupiter's orbital period. The mean rotation period during one orbital period is about 0.3 second longer than that of the system III (1957.0) period. This is in close agreement with the rotation period deduced from decimetric observations and probably represents the true rotation period of the magnetic field. The cyclic drift in the rotation period of source A at 18 megacycles per second is explained on the basis of beaming of the escaping radiation at an angle 6 degrees north of the magnetic equator. The apparent rotation period of source A depends on the rate of change of the Jovicentric declination of Earth.

SELECTION OF CITATIONS
SEARCH DETAIL
...