Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Biol ; 11(5): 812-42, 2004.
Article in English | MEDLINE | ID: mdl-15700404

ABSTRACT

We construct an algebraic-combinatorial model of the SOS compartment of the EGFR biochemical network. A Petri net is used to construct an initial representation of the biochemical decision making network, which in turn defines a hyperdigraph. We observe that the linear algebraic structure of each hyperdigraph admits a canonical set of algebraic-combinatorial invariants that correspond to the information flow conservation laws governing a molecular kinetic reaction network. The linear algebraic structure of the hyperdigraph and its sets of invariants can be generalized to define a discrete algebraic-geometric structure, which is referred to as an oriented matroid. Oriented matroids define a polyhedral optimization geometry that is used to determine optimal subpaths that span the nullspace of a set of kinetic chemical reaction equations. Sets of constrained submodular path optimizations on the hyperdigraph are objectively obtained as a spanning tree of minimum cycle paths. This complete set of subcircuits is used to identify the network pinch points and invariant flow subpaths. We demonstrate that this family of minimal circuits also characteristically identifies additional significant biochemical reaction pattern features. We use the SOS Compartment A of the EGFR biochemical pathway to develop and demonstrate the application of our algebraic-combinatorial mathematical modeling methodology.


Subject(s)
Computational Biology , ErbB Receptors/metabolism , Guanosine Triphosphate/metabolism , Signal Transduction/physiology , ras Proteins/metabolism , Models, Biological
2.
J Comput Biol ; 10(1): 57-82, 2003.
Article in English | MEDLINE | ID: mdl-12676051

ABSTRACT

We have applied an algorithmic methodology which provably decomposes any complex network into a complete family of principal subcircuits to study the minimal circuits that describe the Krebs cycle. Every operational behavior that the network is capable of exhibiting can be represented by some combination of these principal subcircuits and this computational decomposition is linearly efficient. We have developed a computational model that can be applied to biochemical reaction systems which accurately renders pathways of such reactions via directed hypergraphs (Petri nets). We have applied the model to the citric acid cycle (Krebs cycle). The Krebs cycle, which oxidizes the acetyl group of acetyl CoA to CO(2) and reduces NAD and FAD to NADH and FADH(2), is a complex interacting set of nine subreaction networks. The Krebs cycle was selected because of its familiarity to the biological community and because it exhibits enough complexity to be interesting in order to introduce this novel analytic approach. This study validates the algorithmic methodology for the identification of significant biochemical signaling subcircuits, based solely upon the mathematical model and not upon prior biological knowledge. The utility of the algebraic-combinatorial model for identifying the complete set of biochemical subcircuits as a data set is demonstrated for this important metabolic process.


Subject(s)
Algorithms , Citric Acid Cycle/physiology , Metabolism/physiology , Models, Biological , Multienzyme Complexes/physiology , Computer Simulation , Models, Chemical , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...