Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Radiol ; 142: 109882, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34392105

ABSTRACT

Significant advances in imaging analysis and the development of high-throughput methods that can extract and correlate multiple imaging parameters with different clinical outcomes have led to a new direction in medical research. Radiomics and artificial intelligence (AI) studies are rapidly evolving and have many potential applications in breast imaging, such as breast cancer risk prediction, lesion detection and classification, radiogenomics, and prediction of treatment response and clinical outcomes. AI has been applied to different breast imaging modalities, including mammography, ultrasound, and magnetic resonance imaging, in different clinical scenarios. The application of AI tools in breast imaging has an unprecedented opportunity to better derive clinical value from imaging data and reshape the way we care for our patients. The aim of this study is to review the current knowledge and future applications of AI-enhanced breast imaging in clinical practice.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted , Mammography
2.
EBioMedicine ; 61: 103042, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33039708

ABSTRACT

BACKGROUND: To use clinical and MRI radiomic features coupled with machine learning to assess HER2 expression level and predict pathologic response (pCR) in HER2 overexpressing breast cancer patients receiving neoadjuvant chemotherapy (NAC). METHODS: This retrospective study included 311 patients. pCR was defined as no residual invasive carcinoma in the breast or axillary lymph nodes (ypT0/isN0). Radiomics/statistical analysis was performed using MATLAB and CERR software. After ROC and correlation analysis, selected radiomics parameters were advanced to machine learning modelling alongside clinical MRI-based parameters (lesion type, multifocality, size, nodal status). For predicting pCR, the data was split into a training and test set (80:20). FINDINGS: The overall pCR rate was 60.5% (188/311). The final model to predict HER2 heterogeneity utilised three MRI parameters (two clinical, one radiomic) for a sensitivity of 99.3% (277/279), specificity of 81.3% (26/32), and diagnostic accuracy of 97.4% (303/311). The final model to predict pCR included six MRI parameters (two clinical, four radiomic) for a sensitivity of 86.5% (32/37), specificity of 80.0% (20/25), and diagnostic accuracy of 83.9% (52/62) (test set); these results were independent of age and ER status, and outperformed the best model developed using clinical parameters only (p=0.029, comparison of proportion Chi-squared test). INTERPRETATION: The machine learning models, including both clinical and radiomics MRI features, can be used to assess HER2 expression level and can predict pCR after NAC in HER2 overexpressing breast cancer patients. FUNDING: NIH/NCI (P30CA008748), Susan G. Komen Foundation, Breast Cancer Research Foundation, Spanish Foundation Alfonso Martin Escudero, European School of Radiology.


Subject(s)
Biomarkers , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/genetics , Gene Expression , Machine Learning , Magnetic Resonance Imaging , Receptor, ErbB-2/genetics , Adult , Aged , Breast Neoplasms/therapy , Female , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Middle Aged , Neoadjuvant Therapy , ROC Curve , Receptor, ErbB-2/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL