Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Transfus ; 11(1): 61-70, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22682337

ABSTRACT

BACKGROUND: It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. MATERIALS AND METHODS: In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. RESULTS: The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0-6 days). CONCLUSION: These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability.


Subject(s)
Blood Platelets/metabolism , Blood Preservation , Glucose/pharmacology , Mitochondria/metabolism , Plasma , Sweetening Agents/pharmacology , Blood Platelets/cytology , Dose-Response Relationship, Drug , Energy Metabolism/drug effects , Female , Humans , Male
2.
Mol Cell Biochem ; 359(1-2): 205-16, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21837404

ABSTRACT

Physiologic concentration in amniotic fluid (AF) of several metabolites has not been established with certainty. In this study, we initially assayed purines, pyrimidines, and amino compounds in 1,257 AF withdrawn between the 15th and the 20th week of gestation from actually normal pregnancies (normal gestations, normal offspring). Results allowed to determine physiologic reference intervals for 45 compounds. In these AF, not all purines and pyrimidines were detectable and uric acid (238.35±76.31 µmol/l) had the highest concentration. All amino compounds were measurable, with alanine having the highest concentration (401.10±88.47 µmol/l). In the second part of the study, we performed a blind metabolic screening of AF to evaluate the utility of this biochemical analysis as an additional test in amniocenteses. In 1,295 additional AF from normal pregnancies, all metabolites fell within the confidence intervals determined in the first part of the study. In 24 additional AF from women carrying Down's syndrome-affected fetuses, glutamate, glutamine, glycine, taurine, valine, isoleucine, leucine, ornithine, and lysine were different from physiologic reference values. One AF sample showed phenylalanine level of 375.54 µmol/l (mean value in normal AF=65.07 µmol/l) and was from a woman with unreported phenylketonuria with mild hyperphenylalaninemia (serum phenylalanine=360.88 µmol/l), carrying the IVS 4+5 G-T and D394A mutations. The fetus was heterozygote for the maternal D394A mutation. An appropriate diet maintained the mother phenylalanine in the range of normality during pregnancy, avoiding serious damage in fetal and neonatal development. These results suggest that the metabolic screening of AF might be considered as an additional biochemical test in amniocenteses useful to highlight anomalies potentially related to IEM.


Subject(s)
Amniocentesis/methods , Amniotic Fluid/chemistry , Metabolism, Inborn Errors/diagnosis , Metabolome , Amines/analysis , Amniotic Fluid/metabolism , Down Syndrome , Female , Humans , Mass Screening , Metabolism, Inborn Errors/metabolism , Pregnancy , Purines/analysis , Pyrimidines/analysis
3.
Mult Scler Int ; 2011: 167156, 2011.
Article in English | MEDLINE | ID: mdl-22096628

ABSTRACT

Multiple sclerosis (MS) is a progressive demyelinating process considered as an autoimmune disease, although the causes of this pathology have not been yet fully established. Similarly to other neurodegenerations, MS is characterized by a series of biochemical changes affecting to different extent neuronal functions; great attention has been given to oxidative/nitrosative stress and to alterations in mitochondrial functions. According to previous data, MS patients show significant changes in the circulating concentrations of different metabolites, although it is still unclear whether uric acid undergoes to decrease, increase, or no change under this pathological condition. In this study, we report the serum metabolic profile in terms of purines, pyrimidines, creatinine, malondialdehyde, ascorbic acid, nitrite, and nitrate in a group of 170 MS patients. The results show increase in circulating uric acid and other oxypurines (hypoxanthine and xanthine), as well as in uridine and ß-pseudouridine. The concomitant increase in circulating creatinine, malondialdehyde, nitrite, and nitrate, and decrease in ascorbic acid, demonstrates that MS induces alteration in energy metabolism and in oxidants/antioxidants balance that can be monitored in serum of MS patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...