Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Bioengineering (Basel) ; 11(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38391612

ABSTRACT

Previously, we introduced photomagnetic imaging (PMI) that synergistically utilizes laser light to slightly elevate the tissue temperature and magnetic resonance thermometry (MRT) to measure the induced temperature. The MRT temperature maps are then converted into absorption maps using a dedicated PMI image reconstruction algorithm. In the MRT maps, the presence of abnormalities such as tumors would create a notable high contrast due to their higher hemoglobin levels. In this study, we present a new artificial intelligence-based image reconstruction algorithm that improves the accuracy and spatial resolution of the recovered absorption maps while reducing the recovery time. Technically, a supervised machine learning approach was used to detect and delineate the boundary of tumors directly from the MRT maps based on their temperature contrast to the background. This information was further utilized as a soft functional a priori in the standard PMI algorithm to enhance the absorption recovery. Our new method was evaluated on a tissue-like phantom with two inclusions representing tumors. The reconstructed absorption map showed that the well-trained neural network not only increased the PMI spatial resolution but also improved the accuracy of the recovered absorption to as low as a 2% percentage error, reduced the artifacts by 15%, and accelerated the image reconstruction process approximately 9-fold.

2.
Photodiagnosis Photodyn Ther ; 45: 103956, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159834

ABSTRACT

Difficulty in heating tumors with high spatial selectivity while protecting surrounding healthy tissues from thermal harm is a challenge for cancer photothermal treatment (PTT). To mitigate this problem, PTT mediated by photothermal agents (PTAs) has been established as a potential therapeutic technique to boost selectivity and reduce damage to surrounding healthy tissues. Various gold nanoparticles (AuNP) have been effectively utilized as PTAs, mainly using strategies to target cancerous tissue and increase selective thermal damage. Meanwhile, imaging can be used in tandem to monitor the AuNP distribution and guide the PTT. Mainly, the parameters impacting the induced temperature can be determined using simulation tools before treatment for effective PTT. However, accurate simulations can only be performed if the amount of AuNPs accumulated in the tumor is known. This study introduces Photo-Magnetic Imaging (PMI), which can appropriately recover the AuNP concentration to guide the PTT. Using multi-wavelength measurements, PMI can provide AuNP concentration based on their distinct absorption spectra. Tissue-simulating phantom studies are conducted to demonstrate the potential of PMI in recovering AuNP concentration for PTT planning. The recovered AuNP concentration is used to model the temperature increase accurately in a small inclusion representing tumor using a multiphysics solver that takes into account the light propagation and heat diffusion in turbid media.


Subject(s)
Metal Nanoparticles , Neoplasms , Photochemotherapy , Humans , Gold/pharmacology , Metal Nanoparticles/therapeutic use , Photothermal Therapy , Photochemotherapy/methods , Photosensitizing Agents , Neoplasms/diagnostic imaging , Neoplasms/drug therapy
3.
Appl Opt ; 62(28): 7420-7430, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37855510

ABSTRACT

Fluorescence tomography (FT) has become a powerful preclinical imaging modality with a great potential for several clinical applications. Although it has superior sensitivity and utilizes low-cost instrumentation, the highly scattering nature of bio-tissue makes FT in thick samples challenging, resulting in poor resolution and low quantitative accuracy. To overcome the limitations of FT, we previously introduced a novel method, termed temperature modulated fluorescence tomography (TMFT), which is based on two key elements: (1) temperature-sensitive fluorescent agents (ThermoDots) and (2) high-intensity focused ultrasound (HIFU). The fluorescence emission of ThermoDots increases up to hundredfold with only several degree temperature elevation. The exceptional and reversible response of these ThermoDots enables their modulation, which effectively allows their localization using the HIFU. Their localization is then used as functional a priori during the FT image reconstruction process to resolve their distribution with higher spatial resolution. The last version of the TMFT system was based on a cooled CCD camera utilizing a step-and-shoot mode, which necessitated long total imaging time only for a small selected region of interest (ROI). In this paper, we present the latest version of our TMFT technology, which uses a much faster continuous HIFU scanning mode based on an intensified CCD (ICCD) camera. This new, to the best of our knowledge, version can capture the whole field-of-view (FOV) of 50×30m m 2 at once and reduces the total imaging time down to 30 min, while preserving the same high resolution (∼1.3m m) and superior quantitative accuracy (<7% error) as the previous versions. Therefore, this new method is an important step toward utilization of TMFT for preclinical imaging.

4.
Sensors (Basel) ; 23(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765785

ABSTRACT

We recently developed a novel hyperspectral excitation-resolved near-infrared fluorescence imaging system (HER-NIRF) based on a continuous-wave wavelength-swept laser. In this study, this technique is applied to measure the distribution of the therapeutic agent dimethyl sulfoxide (DMSO) by utilizing solvatochromic shift in the spectral profile of albumin-bound Indocyanine green (ICG). Using wide-field imaging in turbid media, complex dynamics of albumin-bound ICG are measured in mixtures of dimethyl sulfoxide (DMSO) and water. Phantom experiments are conducted to evaluate the performance of the HER-NIRF system. The results show that the distribution of DMSO can be visualized in the wide-field reflection geometry. One of the main purposes of the DMSO is to act as a carrier for other drugs, enhancing their effects by facilitating skin penetration. Understanding the solubility and permeability of drugs in vivo is very important in drug discovery and development. Hence, this HER-NIRF technique has great potential to advance the utilization of the therapeutic agent DMSO by mapping its distribution via the solvatochromic shift of ICG. By customizing the operational wavelength range, this system can be applied to any other fluorophores in the near-infrared region and utilized for a wide variety of drug delivery studies.


Subject(s)
Dimethyl Sulfoxide , Indocyanine Green , Optical Imaging/methods , Fluorescent Dyes , Skin
5.
Biomed Opt Express ; 13(11): 5740-5752, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36733748

ABSTRACT

In preclinical research, fluorescence molecular tomography (FMT) is the most sensitive imaging modality to interrogate whole-body and provide 3D distribution of fluorescent contract agents. Despite its superior sensitivity, its mediocre spatial-resolution has been the main barrier to its clinical translation. This limitation is mainly due to the high scattering of optical photons in biological tissue together with the limited boundary measurements that lead to an undetermined and ill-posed inverse problem. To overcome the limitations of FMT, we previously introduced a novel method termed, Temperature Modulated Fluorescence Tomography (TMFT). TMFT utilizes thermos-sensitive fluorescent agents (ThermoDots) as a key component and localizes them with high-intensity focused ultrasound (HIFU). Scanning the focused HIFU beam having a diameter Ø = 1.3 mm across the tissue while monitoring the variation in the measured fluorescence signals reveals the position of the ThermoDots with high spatial accuracy. We have formerly built a prototype TMFT system that uses optical fibers for detection. In this paper, we present an upgraded version using a CCD camera-based detection that enables non-contact imaging. In this version, the animal under investigation is placed on an ultrasound transparent membrane, which eliminates the need for its immersion in optical matching fluids that were required by the fiber-based system. This CCD-based system will pave the way for convenient and wide-spread use of TMFT in preclinical research. Its performance validation on phantom studies demonstrates that high spatial-resolution (∼1.3 mm) and quantitative accuracy in recovered fluorophore concentration (<3% error) can be achieved.

6.
Biomed Opt Express ; 13(11): 6100-6112, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36733750

ABSTRACT

Image-guided small animal radiation research platforms allow more precise radiation treatment. Commercially available small animal X-ray irradiators are often equipped with a CT/cone-beam CT (CBCT) component for target guidance. Besides having poor soft-tissue contrast, CBCT unfortunately cannot provide molecular information due to its low sensitivity. Hence, there are extensive efforts to incorporate a molecular imaging component besides CBCT on these radiation therapy platforms. As an extension of these efforts, here we present a theranostic fluorescence tomography/CBCT-guided irradiator platform that provides both anatomical and molecular guidance, which can overcome the limitations of stand-alone CBCT. The performance of our hybrid system is validated using both tissue-like phantoms and mice ex vivo. Both studies show that fluorescence tomography can provide much more accurate quantitative results when CBCT-derived structural information is used to constrain the inverse problem. The error in the recovered fluorescence absorbance reduces nearly 10-fold for all cases, from approximately 60% down to 6%. This is very significant since high quantitative accuracy in molecular information is crucial to the correct assessment of the changes in tumor microenvironment related to radiation therapy.

7.
Appl Opt ; 60(35): 10855-10861, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-35200850

ABSTRACT

Multiwavelength photo-magnetic imaging (PMI) is a novel combination of diffuse optics and magnetic resonance imaging, to the best of our knowledge, that yields tissue chromophore concentration maps with high resolution and quantitative accuracy. Here, we present the first experimental results, to the best of our knowledge, obtained using a spectrally constrained PMI image reconstruction method, where chromophore concentration maps are directly recovered, unlike the conventional two-step approach that requires an intermediate step of reconstructing wavelength-dependent absorption coefficient maps. The imposition of the prior spectral information into the PMI inverse problem improves the reconstructed image quality and allows recovery of highly quantitative concentration maps, which are crucial for effective cancer detection and characterization. The obtained results demonstrate the higher performance of the direct reconstruction method. Indeed, the reconstructed concentration maps are not only of higher quality but also obtained approximately 2 times faster than the conventional method.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging
8.
Lasers Surg Med ; 53(5): 713-721, 2021 07.
Article in English | MEDLINE | ID: mdl-33169857

ABSTRACT

BACKGROUND AND OBJECTIVES: In photothermal therapy, cancerous tissue is treated by the heat generated from absorbed light energy. For effective photothermal therapy, the parameters affecting the induced temperature should be determined before the treatment by modeling the increase in temperature via numerical simulations. However, accurate simulations can only be achieved when utilizing the accurate optical, thermal, and physiological properties of the treated tissue. Here, we propose a multi-wavelength photo-magnetic imaging (PMI) technique that provides quantitative and spatially resolved tissue optical absorption maps at any wavelength within the near-infrared (NIR) window to assist accurate photothermal therapy planning. STUDY DESIGN/MATERIALS AND METHODS: The study was conducted using our recently developed multi-wavelength PMI system, which operates at four laser wavelengths (760, 808, 860, and 980 nm). An agar tissue-simulating phantom containing water, lipid, and ink was illuminated using these wavelengths, and the slight internal laser-induced temperature rise was measured using magnetic resonance thermometry (MRT). The phantom optical absorption was recovered at the used wavelengths using our dedicated PMI image reconstruction algorithm. These absorption maps were then used to resolve the concentration of the tissue chromophores, and thus deduce its optical absorption spectrum in the NIR region based on the Beer-Lambert law. RESULTS: The optical absorption of the phantom was successfully recovered at the used four wavelengths with an average error of ~1.9%. The recovered absorption coefficient was then used to simulate temperature variations inside the phantom. A comparison between the modeled temperature maps and the MRT measured ones showed that these maps are in a good agreement with an average pseudo R2 statistic of 0.992. These absorption values were used to successfully recover the concentration of the used chromophores. Finally, these concentrations are used to accurately calculate the total absorption spectrum of the phantom in the NIR spectral window with an average error as low as ~2.3%. CONCLUSIONS: Multi-wavelength PMI demonstrated a great ability to assess the distribution of tissue chromophores, thus providing its total absorption at any wavelength within the NIR spectral range. Therefore, applications of photothermal therapy applied at NIR wavelengths can benefit from the absorption spectrum recovered by PMI to determine important parameters such as laser power as well as the laser exposure time needed to attain a specific increase in temperature prior to treatment. Lasers Surg. Med. 00:00-00, 2020. © 2020 Wiley Periodicals LLC.


Subject(s)
Photothermal Therapy , Thermometry , Hot Temperature , Lasers , Phantoms, Imaging
9.
Biomed Opt Express ; 11(8): 4244-4254, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32923039

ABSTRACT

Photo-magnetic imaging (PMI) is an emerging optical imaging modality that showed great performance on providing absorption maps with high resolution and quantitative accuracy. As a multi-modality technology, PMI warms up the imaged object using a near infrared laser while temperature variation is measured using magnetic resonance imaging. By probing tissue at multiple wavelengths, concentration of the main tissue chromophores such as oxy- and deoxy-hemoglobin, lipid, and water are obtained then used to derive functional parameters such as total hemoglobin concentration and relative oxygen saturation. In this paper, we present a multi-wavelength PMI system that was custom-built to host five different laser wavelengths. After recovering the high-resolution absorption maps, a least-squared minimization process was used to resolve the different chromophore concentration. The performance of the system was experimentally tested on a phantom with two different dyes. Their concentrations were successfully assessed with high spatial resolution and average accuracy of nearly 80%.

10.
IEEE Access ; 8: 93663-93670, 2020.
Article in English | MEDLINE | ID: mdl-32542176

ABSTRACT

Hypofractionated stereotactic body radiotherapy treatments (SBRT) have demonstrated impressive results for the treatment of a variety of solid tumors. The role of tumor supporting vasculature damage in treatment outcome for SBRT has been intensely debated and studied. Fast, non-invasive, longitudinal assessments of tumor vasculature would allow for thorough investigations of vascular changes correlated with SBRT treatment response. In this paper, we present a novel theranostic system which incorporates a fluorescence molecular imager into a commercial, preclinical, microCT-guided, irradiator and was designed to quantify tumor vascular response (TVR) to targeted radiotherapy. This system overcomes the limitations of single-timepoint imaging modalities by longitudinally assessing spatiotemporal differences in intravenously-injected ICG kinetics in tumors before and after high-dose radiation. Changes in ICG kinetics were rapidly quantified by principle component (PC) analysis before and two days after 10 Gy targeted tumor irradiation. A classifier algorithm based on PC data clustering identified pixels with TVR. Results show that two days after treatment, a significant delay in ICG clearance as measured by exponential decay (40.5±16.1% P=0.0405 Paired t-test n=4) was observed. Changes in the mean normalized first and second PC feature pixel values (PC1 & PC2) were found (P=0.0559, 0.0432 paired t-test), suggesting PC based analysis accurately detects changes in ICG kinetics. The PC based classification algorithm yielded spatially-resolved TVR maps. Our first-of-its-kind theranostic system, allowing automated assessment of TVR to SBRT, will be used to better understand the role of tumor perfusion in metastasis and local control.

11.
EBioMedicine ; 45: 39-57, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31281099

ABSTRACT

BACKGROUND: Bone metastases are common and devastating to cancer patients. Existing treatments do not specifically target the disease sites and are therefore ineffective and systemically toxic. Here we present a new strategy to treat bone metastasis by targeting both the cancer cells ("the seed"), and their surrounding niche ("the soil"), using stem cells engineered to home to the bone metastatic niche and to maximise local delivery of multiple therapeutic factors. METHODS: We used mesenchymal stem cells engineered using mRNA to simultaneously express P-selectin glycoprotein ligand-1 (PSGL-1)/Sialyl-Lewis X (SLEX) (homing factors), and modified versions of cytosine deaminase (CD) and osteoprotegerin (OPG) (therapeutic factors) to target and treat breast cancer bone metastases in two mouse models, a xenograft intratibial model and a syngeneic model of spontaneous bone metastasis. FINDINGS: We first confirmed that MSC engineered using mRNA produced functional proteins (PSGL-1/SLEX, CD and OPG) using various in vitro assays. We then demonstrated that mRNA-engineered MSC exhibit enhanced homing to the bone metastatic niche likely through interactions between PSGL-1/SLEX and P-selectin expressed on tumour vasculature. In both the xenograft intratibial model and syngeneic model of spontaneous bone metastasis, engineered MSC can effectively kill tumour cells and preserve bone integrity. The engineered MSC also exhibited minimal toxicity in vivo, compared to its non-targeted chemotherapy counterpart (5-fluorouracil). INTERPRETATION: Our combinatorial targeting of both the cancer cells and the niche represents a simple, safe and effective way to treat metastatic bone diseases, otherwise difficult to manage with existing strategies. It can also be applied to other cell types (e.g., T cells) and cargos (e.g., genome editing components) to treat a broad range of cancer and other complex diseases. FUND: National Institutes of Health, National Cancer Institute of the National Institutes of Health, Department of Defense, California Institute of Regenerative Medicine, National Science Foundation, Baylx Inc., and Fondation ARC pour la recherche sur le cancer.


Subject(s)
Bone Neoplasms/therapy , Breast Neoplasms/therapy , Genetic Therapy , Mesenchymal Stem Cell Transplantation , Animals , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Engineering , Cell Line, Tumor , Cytosine Deaminase/genetics , Female , Humans , Membrane Glycoproteins/genetics , Mesenchymal Stem Cells , Mice , Osteoprotegerin/genetics , P-Selectin/genetics , RAW 264.7 Cells , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , Sialyl Lewis X Antigen/genetics , Xenograft Model Antitumor Assays
12.
IEEE Access ; 7: 143207-143216, 2019.
Article in English | MEDLINE | ID: mdl-32435548

ABSTRACT

Molecular imaging is becoming essential for precision targeted radiation therapy, yet progress is hindered from a lack of integrated imaging and treatment systems. We report the development of a prototype positron emission tomography (PET) scanner integrated into a commercial cone beam computed tomography (CBCT) based small animal irradiation system for molecular-image-guided, targeted external beam radiation therapy. The PET component consists of two rotating Hamamatsu time-of-flight PET modules positioned with a bore diameter of 101.6 mm and a radial field-of-view of 53.1 mm. The measured energy resolution after linearity correction at 511 KeV was 12.9% and the timing resolution was 283.6 ps. The measured spatial resolutions at the field-of-view center and 5 mm off the radial center were 2.6 mm × 2.6 mm × 1.6 mm and 2.6 mm × 2.6 mm × 2.7 mm respectively. 18F-Fluorodeoxyglucose-based PET imaging of a NEMA NU 4-2008 phantom resolved cylindrical volumes with diameters as small as 3 mm. To validate the system in-vivo, we performed 64Cu-DOTA-M5A PET and computed tomography (CT) imaging of carcinoembryonic antigen (CEA)-positive colorectal cancer in athymic nude mice and compared the results with a commercially available Siemens Inveon PET/CT system. The prototype PET system performed comparably to the Siemens system for identifying the location, size, and shape of tumors. Regions of heterogeneous 64Cu-DOTA-M5A uptake were observed. Using 64Cu-DOTA-M5A PET and CT images, a Monte Carlo-based radiation treatment plan was created to escalate the dose to the 64Cu-DOTA-M5A-based, highly active, biological target volume while largely sparing the normal tissue. Results demonstrate the feasibility of molecular-image-guided treatment plans using the prototype theranostic system.

13.
Phys Med Biol ; 64(3): 035007, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30561380

ABSTRACT

Fluorescence molecular tomography (FMT) is widely used in preclinical oncology research. FMT is the only imaging technique able to provide 3D distribution of fluorescent probes within thick highly scattering media. However, its integration into clinical medicine has been hampered by its low spatial resolution caused by the undetermined and ill-posed nature of its reconstruction algorithm. Another major factor degrading the quality of FMT images is the large backscattered excitation light component leaking through the rejection filters and coinciding with the weak fluorescent signal arising from a low tissue fluorescence concentration. In this paper, we present a new method based on the use of a novel thermo-sensitive fluorescence probe. In fact, the excitation light leakage is accurately estimated from a set of measurements performed at different temperatures and then is corrected for in the tomographic data. The obtained results show a considerable improvement in both spatial resolution and quantitative accuracy of FMT images due to the proper correction of fluorescent signals.


Subject(s)
Fluorescent Dyes/chemistry , Light , Temperature , Tomography/methods , Algorithms , Phantoms, Imaging
14.
Biomed Opt Express ; 9(6): 2785-2809, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-30258691

ABSTRACT

The dynamic response behavior of red blood cells holds the key to understanding red blood cell related diseases. In this regard, an understanding of the physiological functions of erythrocytes is significant before focusing on red blood cell aggregation in the microcirculatory system. In this work, we present a theoretical model for a photoacoustic signal that occurs when deformed red blood cells pass through a microfluidic channel. Using a Green's function approach, the photoacoustic pressure wave is obtained analytically by solving a combined Navier-Stokes and photoacoustic equation system. The photoacoustic wave expression includes determinant parameters for the cell deformability such as plasma viscosity, density, and red blood cell aggregation, as well as involving laser parameters such as beamwidth, pulse duration, and repetition rate. The effects of aggregation on blood rheology are also investigated. The results presented by this study show good agreements with the experimental ones in the literature. The comprehensive analytical solution of the extended photoacoustic transport model including a modified Morse type potential function sheds light on the dynamics of aggregate formation and demonstrates that the profile of a photoacoustic pressure wave has the potential for detecting and characterizing red blood cell aggregation.

15.
Sensors (Basel) ; 17(12)2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29182570

ABSTRACT

Diffuse optical tomography (DOT) has been studied for use in the detection of breast cancer, cerebral oxygenation, and cognitive brain signals. As optical imaging studies have increased significantly, acquiring imaging data in real time has become increasingly important. We have developed frequency-division multiplexing (FDM) DOT systems to analyze their performance with respect to acquisition time and imaging quality, in comparison with the conventional time-division multiplexing (TDM) DOT. A large tomographic area of a cylindrical phantom 60 mm in diameter could be successfully reconstructed using both TDM DOT and FDM DOT systems. In our experiment with 6 source-detector (S-D) pairs, the TDM DOT and FDM DOT systems required 6.18 and 1 s, respectively, to obtain a single tomographic data set. While the absorption coefficient of the reconstruction image was underestimated in the case of the FDM DOT, we experimentally confirmed that the abnormal region can be clearly distinguished from the background phantom using both methods.

16.
Opt Lett ; 42(20): 4171-4174, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-29028040

ABSTRACT

We recently introduced a new high-resolution diffuse optical imaging technique termed photo-magnetic imaging (PMI), which utilizes magnetic resonance thermometry (MRT) to monitor the 3D temperature distribution induced in a medium illuminated with a near-infrared light. The spatiotemporal temperature distribution due to light absorption can be accurately estimated using a combined photon propagation and heat diffusion model. High-resolution optical absorption images are then obtained by iteratively minimizing the error between the measured and modeled temperature distributions. We have previously demonstrated the feasibility of PMI with experimental studies using tissue simulating agarose phantoms. In this Letter, we present the preliminary ex vivo PMI results obtained with a chicken breast sample. Similarly to the results obtained on phantoms, the reconstructed images reveal that PMI can quantitatively resolve an inclusion with a 3 mm diameter embedded deep in a biological tissue sample with only 10% error. These encouraging results demonstrate the high performance of PMI in ex vivo biological tissue and its potential for in vivo imaging.


Subject(s)
Breast/diagnostic imaging , Image Processing, Computer-Assisted , Thermometry/methods , Female , Humans , Phantoms, Imaging , Photons
17.
Appl Opt ; 56(28): 7886-7891, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29047774

ABSTRACT

Previously, we demonstrated that temperature-modulated fluorescence tomography (TM-FT) could provide fluorescence images with high quantitative accuracy and the spatial resolution of focused ultrasound. TM-FT is based on scanning the focused ultrasound across the medium to activate temperature-reversible fluorescent nanoprobes (ThermoDots). This technique can resolve small fluorescent targets located several centimeters deep in turbid media with millimeter resolution. Our past studies with this multimodality technique used agar phantoms, which could not represent the true heterogeneous nature of the acoustic and optical properties of biological tissue. In this work, we report the results of the first TM-FT study performed on ex vivo chicken breast tissue. In order to improve the spatial resolution of this technique, diffuse optical tomography is also used to better estimate the optical property maps of the tissue, which is utilized as functional a priori for the TM-FT reconstruction algorithm. These ex vivo results show that TM-FT can accurately recover the concentration and position of a 1.5 mm×5 mm inclusion filled with ThermoDots. Since the inclusion is embedded 2 cm deep in the chicken breast sample, these results demonstrate the great potential of TM-FT for future in vivo small animal imaging.


Subject(s)
Algorithms , Chickens , Fluorescence , Pectoralis Muscles/diagnostic imaging , Tomography, Optical/methods , Animals , Coloring Agents , Feasibility Studies , Image Processing, Computer-Assisted/methods , Indocyanine Green , Phantoms, Imaging
18.
Appl Opt ; 56(25): 7146-7157, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29047975

ABSTRACT

We present the feasibility of structured-light-based diffuse optical tomography (DOT) to quantify the breast density with an extensive simulation study. This study is performed on multiple numerical breast phantoms built from magnetic resonance imaging (MRI) images. These phantoms represent realistic tissue morphologies and are given typical breast optical properties. First, synthetic data are simulated at five wavelengths using our structured-light-based DOT forward problem. Afterwards, the inverse problem is solved to obtain the absorption images and subsequently the chromophore concentration maps. Parameters, such as segmented volumes and mean concentrations, are extracted from these maps and used in a regression model to estimate the percent breast densities. These estimations are correlated with the true values from MRI, r=0.97, showing that our new technique is promising in measuring breast density.


Subject(s)
Algorithms , Breast Density , Breast/diagnostic imaging , Phantoms, Imaging , Tomography, Optical/methods , Feasibility Studies , Female , Humans , Magnetic Resonance Imaging/methods
19.
Phys Med Biol ; 62(12): 4694-4710, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28252450

ABSTRACT

It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.


Subject(s)
Acoustics , Proton Therapy , Protons
20.
Nat Commun ; 8: 14413, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28176756

ABSTRACT

Recognizing motivationally salient information is critical to guiding behaviour. The amygdala and hippocampus are thought to support this operation, but the circuit-level mechanism of this interaction is unclear. We used direct recordings in the amygdala and hippocampus from human epilepsy patients to examine oscillatory activity during processing of fearful faces compared with neutral landscapes. We report high gamma (70-180 Hz) activation for fearful faces with earlier stimulus evoked onset in the amygdala compared with the hippocampus. Attending to fearful faces compared with neutral landscape stimuli enhances low-frequency coupling between the amygdala and the hippocampus. The interaction between the amygdala and hippocampus is largely unidirectional, with theta/alpha oscillations in the amygdala modulating hippocampal gamma activity. Granger prediction, phase slope index and phase lag analysis corroborate this directional coupling. These results demonstrate that processing emotionally salient events in humans engages an amygdala-hippocampal network, with the amygdala influencing hippocampal dynamics during fear processing.


Subject(s)
Amygdala/physiopathology , Cognition/physiology , Emotions/physiology , Epilepsy/physiopathology , Hippocampus/physiopathology , Adaptation, Psychological/physiology , Adult , Amygdala/diagnostic imaging , Electrodes , Electroencephalography/instrumentation , Electroencephalography/methods , Epilepsy/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motivation/physiology , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...