Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5402, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926390

ABSTRACT

Acute brain slices represent a workhorse model for studying the central nervous system (CNS) from nanoscale events to complex circuits. While slice preparation inherently involves tissue damage, it is unclear how microglia, the main immune cells and damage sensors of the CNS react to this injury and shape neuronal activity ex vivo. To this end, we investigated microglial phenotypes and contribution to network organization and functioning in acute brain slices. We reveal time-dependent microglial phenotype changes influenced by complex extracellular ATP dynamics through P2Y12R and CX3CR1 signalling, which is sustained for hours in ex vivo mouse brain slices. Downregulation of P2Y12R and changes of microglia-neuron interactions occur in line with alterations in the number of excitatory and inhibitory synapses over time. Importantly, functional microglia modulate synapse sprouting, while microglial dysfunction results in markedly impaired ripple activity both ex vivo and in vivo. Collectively, our data suggest that microglia are modulators of complex neuronal networks with important roles to maintain neuronal network integrity and activity. We suggest that slice preparation can be used to model time-dependent changes of microglia-neuron interactions to reveal how microglia shape neuronal circuits in physiological and pathological conditions.


Subject(s)
Adenosine Triphosphate , Brain , CX3C Chemokine Receptor 1 , Microglia , Neurons , Receptors, Purinergic P2Y12 , Synapses , Animals , Microglia/metabolism , Adenosine Triphosphate/metabolism , Mice , Neurons/metabolism , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Receptors, Purinergic P2Y12/metabolism , Receptors, Purinergic P2Y12/genetics , Brain/metabolism , Synapses/metabolism , Mice, Inbred C57BL , Phenotype , Male , Signal Transduction
3.
Elife ; 112022 01 18.
Article in English | MEDLINE | ID: mdl-35040779

ABSTRACT

Hippocampal place cells are activated sequentially as an animal explores its environment. These activity sequences are internally recreated ('replayed'), either in the same or reversed order, during bursts of activity (sharp wave-ripples [SWRs]) that occur in sleep and awake rest. SWR-associated replay is thought to be critical for the creation and maintenance of long-term memory. In order to identify the cellular and network mechanisms of SWRs and replay, we constructed and simulated a data-driven model of area CA3 of the hippocampus. Our results show that the chain-like structure of recurrent excitatory interactions established during learning not only determines the content of replay, but is essential for the generation of the SWRs as well. We find that bidirectional replay requires the interplay of the experimentally confirmed, temporally symmetric plasticity rule, and cellular adaptation. Our model provides a unifying framework for diverse phenomena involving hippocampal plasticity, representations, and dynamics, and suggests that the structured neural codes induced by learning may have greater influence over cortical network states than previously appreciated.


Subject(s)
Brain Waves/physiology , CA3 Region, Hippocampal/physiology , Learning/physiology , Place Cells/physiology , Animals , Hippocampus/physiology , Interneurons/physiology , Memory/physiology , Mice , Models, Theoretical , Sleep/physiology , Wakefulness/physiology
4.
Science ; 366(6469)2019 11 29.
Article in English | MEDLINE | ID: mdl-31780530

ABSTRACT

Adverse events need to be quickly evaluated and memorized, yet how these processes are coordinated is poorly understood. We discovered a large population of excitatory neurons in mouse median raphe region (MRR) expressing vesicular glutamate transporter 2 (vGluT2) that received inputs from several negative experience-related brain centers, projected to the main aversion centers, and activated the septohippocampal system pivotal for learning of adverse events. These neurons were selectively activated by aversive but not rewarding stimuli. Their stimulation induced place aversion, aggression, depression-related anhedonia, and suppression of reward-seeking behavior and memory acquisition-promoting hippocampal theta oscillations. By contrast, their suppression impaired both contextual and cued fear memory formation. These results suggest that MRR vGluT2 neurons are crucial for the acquisition of negative experiences and may play a central role in depression-related mood disorders.


Subject(s)
Aggression/physiology , Anhedonia/physiology , Avoidance Learning/physiology , Dorsal Raphe Nucleus/physiology , Vesicular Glutamate Transport Protein 2/metabolism , Animals , Depression/physiopathology , Dorsal Raphe Nucleus/metabolism , Evoked Potentials/physiology , Habenula/physiology , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Optogenetics , Theta Rhythm , Vesicular Glutamate Transport Protein 2/genetics
5.
Science ; 364(6442)2019 05 24.
Article in English | MEDLINE | ID: mdl-31123108

ABSTRACT

Hippocampal pyramidal cells encode memory engrams, which guide adaptive behavior. Selection of engram-forming cells is regulated by somatostatin-positive dendrite-targeting interneurons, which inhibit pyramidal cells that are not required for memory formation. Here, we found that γ-aminobutyric acid (GABA)-releasing neurons of the mouse nucleus incertus (NI) selectively inhibit somatostatin-positive interneurons in the hippocampus, both monosynaptically and indirectly through the inhibition of their subcortical excitatory inputs. We demonstrated that NI GABAergic neurons receive monosynaptic inputs from brain areas processing important environmental information, and their hippocampal projections are strongly activated by salient environmental inputs in vivo. Optogenetic manipulations of NI GABAergic neurons can shift hippocampal network state and bidirectionally modify the strength of contextual fear memory formation. Our results indicate that brainstem NI GABAergic cells are essential for controlling contextual memories.


Subject(s)
Association Learning/physiology , GABAergic Neurons/physiology , Raphe Nuclei/physiology , Animals , Female , Interneurons/chemistry , Interneurons/physiology , Male , Memory and Learning Tests , Mice , Mice, Inbred C57BL , Neural Inhibition/physiology , Pyramidal Cells/chemistry , Pyramidal Cells/physiology , Somatostatin/analysis , Somatostatin/physiology , Theta Rhythm
6.
Nat Commun ; 9(1): 2848, 2018 07 20.
Article in English | MEDLINE | ID: mdl-30030438

ABSTRACT

The basal forebrain cholinergic system is widely assumed to control cortical functions via non-synaptic transmission of a single neurotransmitter. Yet, we find that mouse hippocampal cholinergic terminals invariably establish GABAergic synapses, and their cholinergic vesicles dock at those synapses only. We demonstrate that these synapses do not co-release but co-transmit GABA and acetylcholine via different vesicles, whose release is triggered by distinct calcium channels. This co-transmission evokes composite postsynaptic potentials, which are mutually cross-regulated by presynaptic autoreceptors. Although postsynaptic cholinergic receptor distribution cannot be investigated, their response latencies suggest a focal, intra- and/or peri-synaptic localisation, while GABAA receptors are detected intra-synaptically. The GABAergic component alone effectively suppresses hippocampal sharp wave-ripples and epileptiform activity. Therefore, the differentially regulated GABAergic and cholinergic co-transmission suggests a hitherto unrecognised level of control over cortical states. This novel model of hippocampal cholinergic neurotransmission may lead to alternative pharmacotherapies after cholinergic deinnervation seen in neurodegenerative disorders.


Subject(s)
Acetylcholine/physiology , Hippocampus/physiology , Receptors, GABA-A/physiology , gamma-Aminobutyric Acid/physiology , Animals , Calcium/physiology , Dendrites/physiology , Female , Imaging, Three-Dimensional , Male , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/physiopathology , Neurotransmitter Agents/physiology , Perfusion , Synapses/physiology , Synaptic Potentials , Synaptic Transmission , Synaptic Vesicles/physiology
7.
Front Neural Circuits ; 10: 88, 2016.
Article in English | MEDLINE | ID: mdl-27877113

ABSTRACT

In vivo and in vitro multichannel field and somatic intracellular recordings are frequently used to study mechanisms of network pattern generation. When interpreting these data, neurons are often implicitly considered as electrotonically compact cylinders with a homogeneous distribution of excitatory and inhibitory inputs. However, the actual distributions of dendritic length, diameter, and the densities of excitatory and inhibitory input are non-uniform and cell type-specific. We first review quantitative data on the dendritic structure and synaptic input and output distribution of pyramidal cells (PCs) and interneurons in the hippocampal CA1 area. Second, using multicompartmental passive models of four different types of neurons, we quantitatively explore the effect of differences in dendritic structure and synaptic distribution on the errors and biases of voltage clamp measurements of inhibitory and excitatory postsynaptic currents. Finally, using the 3-dimensional distribution of dendrites and synaptic inputs we calculate how different inhibitory and excitatory inputs contribute to the generation of local field potential in the hippocampus. We analyze these effects at different realistic background activity levels as synaptic bombardment influences neuronal conductance and thus the propagation of signals in the dendritic tree. We conclude that, since dendrites are electrotonically long and entangled in 3D, somatic intracellular and field potential recordings miss the majority of dendritic events in some cell types, and thus overemphasize the importance of perisomatic inhibitory inputs and belittle the importance of complex dendritic processing. Modeling results also suggest that PCs and inhibitory neurons probably use different input integration strategies. In PCs, second- and higher-order thin dendrites are relatively well-isolated from each other, which may support branch-specific local processing as suggested by studies of active dendritic integration. In the electrotonically compact parvalbumin- and cholecystokinincontaining interneurons, synaptic events are visible in the whole dendritic arbor, and thus the entire dendritic tree may form a single integrative element. Calretinin-containing interneurons were found to be electrotonically extended, which suggests the possibility of complex dendritic processing in this cell type. Our results also highlight the need for the integration of methods that allow the measurement of dendritic processes into studies of synaptic interactions and dynamics in neural networks.


Subject(s)
Hippocampus/physiology , Neural Inhibition/physiology , Neurons/physiology , Synaptic Potentials/physiology , Animals , Hippocampus/cytology , Models, Neurological , Pyramidal Cells/physiology , Rats
8.
Curr Opin Neurobiol ; 31: 26-32, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25128735

ABSTRACT

Sharp-wave-ripple complexes (SWRs) and interictal-spikes are physiological and pathological forms of irregularly occurring transient high activity events in the hippocampal EEG. They share similar features and carry high-frequency oscillations with different spectral features. Recent results reveal similarities and differences in the generation of the two types of transients, and argue that parvalbumin containing basket cells (PVBCs) are crucial in synchronizing neuronal activity in both cases. SWRs are generated in the reciprocally connected network of inhibitory PVBCs, while in the pathological case, synchronous failure of perisomatic inhibition triggers massive pyramidal cell burst firing. While physiological ripple oscillation is primarily the result of phasic perisomatic inhibitory currents, pathological high-frequency ripples are population spikes of partially synchronous, massively bursting, uninhibited pyramidal cells.


Subject(s)
Action Potentials/physiology , Biological Clocks/physiology , Hippocampus/physiology , Neural Inhibition/physiology , Neurons/physiology , Animals , Electroencephalography , Humans , Parvalbumins
9.
Brain Struct Funct ; 220(2): 919-40, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24407853

ABSTRACT

Three functionally different populations of perisomatic interneurons establish GABAergic synapses on hippocampal pyramidal cells: parvalbumin (PV)-containing basket cells, type 1 cannabinoid receptor (CB1)-positive basket cells both of which target somata, and PV-positive axo-axonic cells that innervate axon initial segments. Using electron microscopic reconstructions, we estimated that a pyramidal cell body receives synapses from about 60 and 140 synaptic terminals in the CA1 and CA3 area, respectively. About 60 % of these terminals were PV positive, whereas 35-40 % of them were CB1 positive. Only about 1 % (CA1) and 4 % (CA3) of the somatic boutons were negative for both markers. Using fluorescent labeling, we showed that most of the CB1-positive terminals expressed vesicular glutamate transporter 3. Reconstruction of somatic boutons revealed that although their volumes are similar, CB1-positive boutons are more flat and the total volume of their mitochondria was smaller than that of PV-positive boutons. Both types of boutons contain dense-core vesicles and frequently formed multiple release sites on their targets and innervated an additional soma or dendrite as well. PV-positive boutons possessed small, macular synapses; whereas the total synaptic area of CB1-positive boutons was larger and formed multiple irregular-shaped synapses. Axo-axonic boutons were smaller than somatic boutons, had only one synapse and their ultrastructural parameters were closer to those of PV-positive somatic boutons. Our results represent the first quantitative measurement-using a highly reliable method-of the contribution of different cell types to the perisomatic innervation of pyramidal neurons, and may help to explain functional differences in their output properties.


Subject(s)
Hippocampus/ultrastructure , Interneurons/ultrastructure , Presynaptic Terminals/ultrastructure , Pyramidal Cells/ultrastructure , Amino Acid Transport Systems, Acidic , Animals , Hippocampus/metabolism , Interneurons/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/ultrastructure , Parvalbumins/analysis , Presynaptic Terminals/metabolism , Pyramidal Cells/metabolism , Receptor, Cannabinoid, CB1/analysis
10.
J Neurosci ; 34(34): 11385-98, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25143618

ABSTRACT

Replay of neuronal activity during hippocampal sharp wave-ripples (SWRs) is essential in memory formation. To understand the mechanisms underlying the initiation of irregularly occurring SWRs and the generation of periodic ripples, we selectively manipulated different components of the CA3 network in mouse hippocampal slices. We recorded EPSCs and IPSCs to examine the buildup of neuronal activity preceding SWRs and analyzed the distribution of time intervals between subsequent SWR events. Our results suggest that SWRs are initiated through a combined refractory and stochastic mechanism. SWRs initiate when firing in a set of spontaneously active pyramidal cells triggers a gradual, exponential buildup of activity in the recurrent CA3 network. We showed that this tonic excitatory envelope drives reciprocally connected parvalbumin-positive basket cells, which start ripple-frequency spiking that is phase-locked through reciprocal inhibition. The synchronized GABA(A) receptor-mediated currents give rise to a major component of the ripple-frequency oscillation in the local field potential and organize the phase-locked spiking of pyramidal cells. Optogenetic stimulation of parvalbumin-positive cells evoked full SWRs and EPSC sequences in pyramidal cells. Even with excitation blocked, tonic driving of parvalbumin-positive cells evoked ripple oscillations. Conversely, optogenetic silencing of parvalbumin-positive cells interrupted the SWRs or inhibited their occurrence. Local drug applications and modeling experiments confirmed that the activity of parvalbumin-positive perisomatic inhibitory neurons is both necessary and sufficient for ripple-frequency current and rhythm generation. These interneurons are thus essential in organizing pyramidal cell activity not only during gamma oscillation, but, in a different configuration, during SWRs.


Subject(s)
Action Potentials/physiology , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/physiology , Neurons/physiology , Vestibular Evoked Myogenic Potentials/physiology , Action Potentials/drug effects , Agatoxins/pharmacology , Anesthetics, Local/pharmacology , Animals , Animals, Newborn , Ankyrins/metabolism , CA3 Region, Hippocampal/drug effects , Calcium Channel Blockers/pharmacology , Channelrhodopsins , Excitatory Postsynaptic Potentials/drug effects , Female , Inhibitory Postsynaptic Potentials/drug effects , Male , Mice , Mice, Transgenic , Models, Neurological , Neurons/drug effects , Parvalbumins/genetics , Signal Detection, Psychological , Tetrodotoxin/pharmacology , Vestibular Evoked Myogenic Potentials/drug effects
11.
Front Neuroinform ; 8: 63, 2014.
Article in English | MEDLINE | ID: mdl-25071540

ABSTRACT

The construction of biologically relevant neuronal models as well as model-based analysis of experimental data often requires the simultaneous fitting of multiple model parameters, so that the behavior of the model in a certain paradigm matches (as closely as possible) the corresponding output of a real neuron according to some predefined criterion. Although the task of model optimization is often computationally hard, and the quality of the results depends heavily on technical issues such as the appropriate choice (and implementation) of cost functions and optimization algorithms, no existing program provides access to the best available methods while also guiding the user through the process effectively. Our software, called Optimizer, implements a modular and extensible framework for the optimization of neuronal models, and also features a graphical interface which makes it easy for even non-expert users to handle many commonly occurring scenarios. Meanwhile, educated users can extend the capabilities of the program and customize it according to their needs with relatively little effort. Optimizer has been developed in Python, takes advantage of open-source Python modules for nonlinear optimization, and interfaces directly with the NEURON simulator to run the models. Other simulators are supported through an external interface. We have tested the program on several different types of problems of varying complexity, using different model classes. As targets, we used simulated traces from the same or a more complex model class, as well as experimental data. We successfully used Optimizer to determine passive parameters and conductance densities in compartmental models, and to fit simple (adaptive exponential integrate-and-fire) neuronal models to complex biological data. Our detailed comparisons show that Optimizer can handle a wider range of problems, and delivers equally good or better performance than any other existing neuronal model fitting tool.

12.
Brain ; 137(Pt 2): 463-85, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24390441

ABSTRACT

Sharp wave-ripples and interictal events are physiological and pathological forms of transient high activity in the hippocampus with similar features. Sharp wave-ripples have been shown to be essential in memory consolidation, whereas epileptiform (interictal) events are thought to be damaging. It is essential to grasp the difference between physiological sharp wave-ripples and pathological interictal events to understand the failure of control mechanisms in the latter case. We investigated the dynamics of activity generated intrinsically in the Cornu Ammonis region 3 of the mouse hippocampus in vitro, using four different types of intervention to induce epileptiform activity. As a result, sharp wave-ripples spontaneously occurring in Cornu Ammonis region 3 disappeared, and following an asynchronous transitory phase, activity reorganized into a new form of pathological synchrony. During epileptiform events, all neurons increased their firing rate compared to sharp wave-ripples. Different cell types showed complementary firing: parvalbumin-positive basket cells and some axo-axonic cells stopped firing as a result of a depolarization block at the climax of the events in high potassium, 4-aminopyridine and zero magnesium models, but not in the gabazine model. In contrast, pyramidal cells began firing maximally at this stage. To understand the underlying mechanism we measured changes of intrinsic neuronal and transmission parameters in the high potassium model. We found that the cellular excitability increased and excitatory transmission was enhanced, whereas inhibitory transmission was compromised. We observed a strong short-term depression in parvalbumin-positive basket cell to pyramidal cell transmission. Thus, the collapse of pyramidal cell perisomatic inhibition appears to be a crucial factor in the emergence of epileptiform events.


Subject(s)
Action Potentials/physiology , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/physiology , Animals , Female , Male , Memory/physiology , Mice , Mice, Transgenic , Neurons/physiology , Organ Culture Techniques , Pyramidal Cells/physiology
13.
J Neurosci ; 33(28): 11677-91, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23843535

ABSTRACT

Hippocampal sharp waves and the associated ripple oscillations (SWRs) are implicated in memory processes. These network events emerge intrinsically in the CA3 network. To understand cellular interactions that generate SWRs, we detected first spiking activity followed by recording of synaptic currents in distinct types of anatomically identified CA3 neurons during SWRs that occurred spontaneously in mouse hippocampal slices. We observed that the vast majority of interneurons fired during SWRs, whereas only a small portion of pyramidal cells was found to spike. There were substantial differences in the firing behavior among interneuron groups; parvalbumin-expressing basket cells were one of the most active GABAergic cells during SWRs, whereas ivy cells were silent. Analysis of the synaptic currents during SWRs uncovered that the dominant synaptic input to the pyramidal cell was inhibitory, whereas spiking interneurons received larger synaptic excitation than inhibition. The discharge of all interneurons was primarily determined by the magnitude and the timing of synaptic excitation. Strikingly, we observed that the temporal structure of synaptic excitation and inhibition during SWRs significantly differed between parvalbumin-containing basket cells, axoaxonic cells, and type 1 cannabinoid receptor (CB1)-expressing basket cells, which might explain their distinct recruitment to these synchronous events. Our data support the hypothesis that the active current sources restricted to the stratum pyramidale during SWRs originate from the synaptic output of parvalbumin-expressing basket cells. Thus, in addition to gamma oscillation, these GABAergic cells play a central role in SWR generation.


Subject(s)
Action Potentials/physiology , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/physiology , Neurons/physiology , Animals , Female , Male , Mice , Organ Culture Techniques , Synaptic Transmission/physiology
14.
Hippocampus ; 22(6): 1379-91, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21956752

ABSTRACT

The two main glutamatergic pathways to the CA1 area, the Schaffer collateral/commissural input and the entorhinal fibers, as well as the local axons of CA1 pyramidal cells innervate both pyramidal cells and interneurons. To determine whether these inputs differ in their weights of activating GABAergic circuits, we have studied the relative proportion of pyramidal cells and interneurons among their postsynaptic targets in serial electron microscopic sections. Local axons of CA1 pyramidal cells, intracellularly labeled in vitro or in vivo, innervated a relatively high proportion of interneuronal postsynaptic targets (65.9 and 53.8%, in vitro and in vivo, respectively) in stratum (str.) oriens and alveus. In contrast, axons of in vitro labeled CA3 pyramidal cells in str. oriens and str. radiatum of the CA1 area made synaptic junctions predominantly with pyramidal cell spines (92.9%). The postsynaptic targets of anterogradely labeled medial entorhinal cortical boutons in CA1 str. lacunosum-moleculare were primarily pyramidal neuron dendritic spines and shafts (90.8%). The alvear group of the entorhinal afferents, traversing str. oriens, str. pyramidale, and str. radiatum showed a higher preference for innervating GABAergic cells (21.3%), particularly in str. oriens/alveus. These data demonstrate that different glutamatergic pathways innervate CA1 GABAergic cells to different extents. The results suggest that the numerically smaller CA1 local axonal inputs together with the alvear part of the entorhinal input preferentially act on GABAergic interneurons in contrast to the CA3, or the entorhinal input in str. lacunosum-moleculare. The results highlight differences in the postsynaptic target selection of the feed-forward versus recurrent glutamatergic inputs to the CA1 and CA3 areas.


Subject(s)
CA1 Region, Hippocampal/physiology , Glutamic Acid/physiology , Interneurons/physiology , Pyramidal Cells/physiology , Animals , CA1 Region, Hippocampal/ultrastructure , CA3 Region, Hippocampal/physiology , CA3 Region, Hippocampal/ultrastructure , Female , Interneurons/ultrastructure , Male , Pyramidal Cells/ultrastructure , Random Allocation , Rats , Rats, Sprague-Dawley , Rats, Wistar
15.
J Histochem Cytochem ; 59(3): 258-69, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21378280

ABSTRACT

The available methods for double-labeling preembedding immunoelectron microscopy are highly limited because not only should the ultrastructure be preserved, but also the different antigens should be visualized by reaction end products that can be clearly distinguished in gray-scale images. In these procedures, one antigen is detected with 3,3'-diaminobenzidine (DAB) chromogen, resulting in a homogeneous deposit, whereas the other is labeled with either a gold-tagged immunoreagent, or DAB polymer, on the surface of which metallic silver is precipitated. The detection of the second antigen is usually impeded by the first, leading to false-negative results. The authors aimed to diminish this hindrance by a new silver intensification technique of DAB polymer, which converts the deposit from amorphous to granular. The method includes three major postdevelopmental steps: (1) treatment of nickel-enhanced DAB with sulfide, (2) silver deposition in the presence of hydroquinone under acidic conditions, and (3) precious metal replacement with gold thiocyanate. This new sulfide-silver-gold intensification of DAB (SSGI) allows a subsequent detection of other antigens using DAB. In conclusion, the new technique loads fine gold particles onto the DAB deposit at a very low background level, thereby allowing a reliable discernment between the elements stained for the two antigens at the ultrastructural level.


Subject(s)
3,3'-Diaminobenzidine , Acetates , Brain/metabolism , Chlorides , Glial Fibrillary Acidic Protein/metabolism , Gold Compounds , Parvalbumins/metabolism , Receptor, Cannabinoid, CB1/metabolism , Silver Compounds , Animals , Biomarkers/metabolism , Brain/ultrastructure , Immunohistochemistry , Indicators and Reagents , Male , Mice , Mice, Inbred C57BL , Microscopy, Immunoelectron
16.
J Neurosci ; 30(45): 15134-45, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-21068319

ABSTRACT

Gamma frequency oscillations in cortical regions can be recorded during cognitive processes, including attention or memory tasks. These oscillations are generated locally as a result of reciprocal interactions between excitatory pyramidal cells and perisomatic inhibitory interneurons. Here, we examined the contribution of the three perisomatic interneuron types--the parvalbumin-containing fast-spiking basket cells (FSBCs) and axo-axonic cells (AACs), as well as the cholecystokinin-containing regular-spiking basket cells (RSBCs) to cholinergically induced oscillations in hippocampal slices, a rhythmic activity that captures several features of the gamma oscillations recorded in vivo. By analyzing the spiking activities of single neurons recorded in parallel with local field potentials, we found that all three cell types fired phase locked to the carbachol-induced oscillations, although with different frequencies and precision. During these oscillations, FSBCs fired the most with the highest accuracy compared with the discharge of AACs and RSBCs. In further experiments, we showed that activation of µ-opioid receptors by DAMGO ([D-Ala(2),N-Me-Phe(4),Gly(5)-ol]enkephalin acetate), which significantly reduced the inhibitory, but not excitatory, transmission, suppressed or even blocked network oscillations both in vitro and in vivo, leading to the desynchronization of pyramidal cell firing. Using paired recordings, we demonstrated that carbachol application blocked GABA release from RSBCs and reduced it from FSBCs and AACs, whereas DAMGO further suppressed the GABA release only from FSBCs, but not from AACs. These results collectively suggest that the rhythmic perisomatic inhibition, generating oscillatory fluctuation in local field potentials after carbachol treatment of hippocampal slices, is the result of periodic GABA release from FSBCs.


Subject(s)
Biological Clocks/physiology , Hippocampus/physiology , Neurons/physiology , Parvalbumins/metabolism , Receptors, Cholinergic/physiology , Analysis of Variance , Animals , Ankyrins/metabolism , Biological Clocks/drug effects , Carbachol/pharmacology , Cholecystokinin/metabolism , Electrophysiology , Female , Hippocampus/cytology , Hippocampus/drug effects , Immunohistochemistry , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron , Miniature Postsynaptic Potentials/drug effects , Miniature Postsynaptic Potentials/physiology , Neurons/cytology , Neurons/drug effects
17.
Eur J Neurosci ; 31(12): 2234-46, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20529124

ABSTRACT

Perisomatic inhibition originates from three types of GABAergic interneurons in cortical structures, including parvalbumin-containing fast-spiking basket cells (FSBCs) and axo-axonic cells (AACs), as well as cholecystokinin-expressing regular-spiking basket cells (RSBCs). These interneurons may have significant impact in various cognitive processes, and are subjects of cholinergic modulation. However, it is largely unknown how cholinergic receptor activation modulates the function of perisomatic inhibitory cells. Therefore, we performed paired recordings from anatomically identified perisomatic interneurons and pyramidal cells in the CA3 region of the mouse hippocampus. We determined the basic properties of unitary inhibitory postsynaptic currents (uIPSCs) and found that they differed among cell types, e.g. GABA released from axon endings of AACs evoked uIPSCs with the largest amplitude and with the longest decay measured at room temperature. RSBCs could also release GABA asynchronously, the magnitude of the release increasing with the discharge frequency of the presynaptic interneuron. Cholinergic receptor activation by carbachol significantly decreased the uIPSC amplitude in all three types of cell pairs, but to different extents. M2-type muscarinic receptors were responsible for the reduction in uIPSC amplitudes in FSBC- and AAC-pyramidal cell pairs, while an antagonist of CB(1) cannabinoid receptors recovered the suppression in RSBC-pyramidal cell pairs. In addition, carbachol suppressed or even eliminated the short-term depression of uIPSCs in FSBC- and AAC-pyramidal cell pairs in a frequency-dependent manner. These findings suggest that not only are the basic synaptic properties of perisomatic inhibitory cells distinct, but acetylcholine can differentially control the impact of perisomatic inhibition from different sources.


Subject(s)
CA3 Region, Hippocampal/metabolism , Interneurons/metabolism , Pyramidal Cells/metabolism , Receptors, Cholinergic/metabolism , Synapses/metabolism , Animals , CA3 Region, Hippocampal/cytology , Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Interneurons/cytology , Membrane Potentials/physiology , Mice , Mice, Transgenic , Patch-Clamp Techniques , Pyramidal Cells/cytology , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism
18.
Eur J Neurosci ; 28(1): 148-64, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18662340

ABSTRACT

The morphological properties and connectivity of gamma-aminobutyric acid (GABA)ergic hippocampal cells projecting to the medial septum (HS cells) were examined in the rat. Two types of HS cells are located in different layers of the hippocampus: sparsely-spiny cells are in CA1-3 str. oriens and CA3 str. radiatum, where recurrent axons of pyramidal cells arborize. Densely-spiny HS cells with spiny somata are located in the termination zone of granule cell axons. In the hilus, intermediate morphologies can also be found. HS cells receive GABAergic medial septal afferents in all layers where they occur, thus the connectivity of the septum and the hippocampus is reciprocal at cell level. HS cells receive extremely dense innervation, sparsely-spiny cells are innervated by approximately 19,000 excitatory inputs, while densely-spiny cells get an even larger number (approximately 37,000). While 14% of the inputs are inhibitory for the sparsely-spiny cells, it is only 2.3% in the case of densely-spiny cells. Because a high proportion (up to 54.5% on somata and 27.5% on dendrites) of their GABAergic inputs derived from labelled septal terminals, their predominant inhibitory input probably arises from the medial septum. CA1 area HS cells possessed myelinated projecting axons, as well as local collaterals, which targeted mostly pyramidal cell dendrites and spines in str. oriens and radiatum. The synaptic organization suggests that by sampling the activity of large populations of principal cells HS cells can reliably broadcast hippocampal activity level to the medial septum.


Subject(s)
Hippocampus/cytology , Neural Pathways/anatomy & histology , Neurons/cytology , Septal Nuclei/cytology , Synapses/metabolism , Animals , Male , Models, Biological , Neural Pathways/metabolism , Neurons/metabolism , Rats , Rats, Wistar , Septal Nuclei/metabolism , Synapses/ultrastructure
19.
Eur J Neurosci ; 23(10): 2581-94, 2006 May.
Article in English | MEDLINE | ID: mdl-16817861

ABSTRACT

Cytochrome c (CC) immunoreactivity was quantified in functionally distinct rat hippocampal inhibitory neuron populations using double immunocytochemistry and laser scanning confocal microscopy to measure the CC expression level as well as the amount of mitochondria within the cells, which is a sign of neuronal activity. The CC signal showed a similar distribution to cytochrome c oxidase histochemical staining. Strongly stained somata, dendrites and axon terminal clouds were dispersed over the low intensity neuropil staining. The staining was granular and electron microscopic investigation confirmed that the signal was localized in mitochondria. Intensively labeled neurons, showing the morphological features of inhibitory cells, were most frequently found in the principal cell layers, stratum oriens of the CA1-3 areas, stratum lucidum and hilus. These neurons contained not only a higher number of mitochondria than the principal cells but the intensity of the mitochondrial staining was evidently stronger. Among the examined interneuronal populations, parvalbumin-immunoreactive neurons were intensively labeled for CC. Calbindin D28k- (CB), somatostatin- and cholecystokinin-labeled cells showed heterogeneous CC levels, whereas calretinin-immunoreactive cells never showed a strong CC signal. CB cells in stratum oriens and alveus layers, lucidum and the hilus were strongly labeled for CC. CB cells in such regions are known to project to the medial septum and contain somatostatin. We have demonstrated that the CA1 interneurons that project to the medial septum (hippocampo-septal neurons) express a high level of CC. Thus, similar to the parvalbumin-containing basket and axo-axonic cells, the hippocampo-septal neurons potentially have a high average activity level.


Subject(s)
Cytochromes c/biosynthesis , Hippocampus/metabolism , Hippocampus/ultrastructure , Interneurons/metabolism , Interneurons/ultrastructure , Animals , Electron Transport Complex IV/metabolism , Immunohistochemistry , Male , Microscopy, Confocal , Mitochondria/metabolism , Rats
20.
Hippocampus ; 14(4): 460-81, 2004.
Article in English | MEDLINE | ID: mdl-15224983

ABSTRACT

Transgenic mice are overtaking the role of model animals in neuroscience. They are used in developmental, anatomical, and physiological as well as experimental neurology. However, most results on the organization of the nervous system derive from the rat. The rat hippocampus and its neuronal elements have been thoroughly investigated, revealing remarkable functional and morphological diversity and specificity among hippocampal interneurons. Our aim was to examine the properties of distinct hippocampal interneuron populations, i.e., those immunoreactive for calcium-binding proteins (parvalbumin, calbindin, and calretinin), neuropeptides (cholecystokinin, neuropeptide Y, somatostatin, vasoactive intestinal polypeptide), and certain receptors (metabotropic glutamate receptor 1alpha, cannabinoid receptor type 1) in four strains of mice widely used in transgenic technology, and to compare their properties to those in the rat. Our data indicate that the distribution as well as the dendritic and axonal arborization of mouse interneurons immunoreactive for the different markers was identical in the examined mouse strains, and in most respects are similar to the features found in the rat. The postsynaptic targets of neurons terminating in the perisomatic (parvalbumin), proximal (calbindin), and distal (somatostatin) dendritic region, as well as on other interneurons (calretinin), also matched those found in the rat. However, a few significant differences could also be observed between the two species in addition to the already described immunoreactivity of mossy cells for calretinin: the absence of spiny calretinin-immunoreactive interneurons in the CA3 region, sparse contacts between calretinin-immunoreactive interneurons, and the axon staining for somatostatin and neuropil labeling for cholecystokinin. We can conclude that the morphofunctional classification of interneurons established in the rat is largely valid for mouse strains used in transgenic procedures.


Subject(s)
Hippocampus/cytology , Interneurons/cytology , Animals , Calbindins , Calcium-Binding Proteins/metabolism , Crosses, Genetic , Female , Hippocampus/physiology , Immunohistochemistry/methods , Interneurons/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Parvalbumins/metabolism , Receptors, Cannabinoid/analysis , S100 Calcium Binding Protein G/metabolism , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...