Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10805, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734711

ABSTRACT

The commissioning of multi-petawatt class laser facilities around the world is gathering pace. One of the primary motivations for these investments is the acceleration of high-quality, low-emittance electron bunches. Here we explore the interaction of a high-intensity femtosecond laser pulse with a mass-limited dense target to produce MeV attosecond electron bunches in transmission and confirm with three-dimensional simulation that such bunches have low emittance and nano-Coulomb charge. We then perform a large parameter scan from non-relativistic laser intensities to the laser-QED regime and from the critical plasma density to beyond solid density to demonstrate that the electron bunch energies and the laser pulse energy absorption into the plasma can be quantitatively described via the Zero Vector Potential mechanism. These results have wide-ranging implications for future particle accelerator science and associated technologies.

2.
Rev Sci Instrum ; 93(10): 103506, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319395

ABSTRACT

Plastic deformation of samples compressed to Mbar pressures at high strain rates at the National Ignition Facility (NIF) forms the basis of ongoing material strength experiments in conditions relevant to meteor impacts, geophysics, armor development, and inertial confinement fusion. Hard x-ray radiography is the primary means of measuring the evolution of these samples, typically employing a slit-collimated high-Z microdot driven by the NIF laser to generate >40 keV x rays [E. Gumbrell et al., Rev. Sci. Instrum. 89, 10G118 (2018) and C. M. Huntington et al., Rev. Sci. Instrum. 89, 10G121 (2018)]. Alternatively, a dysprosium "micro-flag" target driven by the Advanced Radiographic Capability laser (∼2 kJ, 10 ps) can deliver significantly higher spatiotemporal resolution [M. P. Hill et al., Rev. Sci. Instrum. 92, 033535 (2021)], especially in high-opacity samples. Initial experiments revealed problematic brightness and spectral gradients from this source, but by radiographing a set of diamond-turned, 105 µm-thick Pb test objects and supported by simulations using the 3D Monte Carlo code GEANT4, these geometry-dependent gradients across the field of view are quantified and mitigation strategies are assessed. In addition to significantly enhancing the modulation transfer function compared to the existing system, image stacking from multiple layers of image plate is shown to almost double the signal to noise ratio that will reduce uncertainties in future dynamic strength experiments.

3.
Rev Sci Instrum ; 92(3): 033535, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820053

ABSTRACT

Radiography of low-contrast features in high-density materials evolving on a nanosecond timescale requires a bright photon source in the tens of keV range with high temporal and spatial resolution. One application for sources in this category is the study of dynamic material strength in samples compressed to Mbar pressures at the National Ignition Facility, high-resolution measurements of plastic deformation under conditions relevant to meteor impacts, geophysics, armor development, and inertial confinement fusion. We present radiographic data and the modulation transfer function (MTF) analysis of a multi-component test object probed at ∼100 keV effective backlighter energy using a 5 µm-thin dysprosium foil driven by the NIF Advanced Radiographic Capability (ARC) short-pulse laser (∼2 kJ, 10 ps). The thin edge of the foil acts as a bright line-projection source of hard x rays, which images the test object at 13.2× magnification into a filtered and shielded image plate detector stack. The system demonstrates a superior contrast of shallow (5 µm amplitude) sinusoidal ripples on gold samples up to 90 µm thick as well as enhanced spatial and temporal resolution using only a small fraction of the laser energy compared to an existing long-pulse-driven backlighter used routinely at the NIF for dynamic strength experiments.

4.
Nat Commun ; 12(1): 334, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436570

ABSTRACT

Magnetized plasma interactions are ubiquitous in astrophysical and laboratory plasmas. Various physical effects have been shown to be important within colliding plasma flows influenced by opposing magnetic fields, however, experimental verification of the mechanisms within the interaction region has remained elusive. Here we discuss a laser-plasma experiment whereby experimental results verify that Biermann battery generated magnetic fields are advected by Nernst flows and anisotropic pressure effects dominate these flows in a reconnection region. These fields are mapped using time-resolved proton probing in multiple directions. Various experimental, modelling and analytical techniques demonstrate the importance of anisotropic pressure in semi-collisional, high-ß plasmas, causing a reduction in the magnitude of the reconnecting fields when compared to resistive processes. Anisotropic pressure dynamics are crucial in collisionless plasmas, but are often neglected in collisional plasmas. We show pressure anisotropy to be essential in maintaining the interaction layer, redistributing magnetic fields even for semi-collisional, high energy density physics (HEDP) regimes.

5.
Phys Rev Lett ; 123(20): 205701, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31809064

ABSTRACT

We study the high-pressure strength of Pb and Pb-4wt%Sb at the National Ignition Facility. We measure Rayleigh-Taylor growth of preformed ripples ramp compressed to ∼400 GPa peak pressure, among the highest-pressure strength measurements ever reported on any platform. We find agreement with 2D simulations using the Improved Steinberg-Guinan strength model for body-centered-cubic Pb; the Pb-4wt%Sb alloy behaves similarly within the error bars. The combination of high-rate, pressure-induced hardening and polymorphism yield an average inferred flow stress of ∼3.8 GPa at high pressure, a ∼250-fold increase, changing Pb from soft to extremely strong.

6.
Rev Sci Instrum ; 89(10): 10G121, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399794

ABSTRACT

We have tested a set of x-ray sources for use as probes of highly attenuating, laser-driven experiments on the National Ignition Facility (NIF). Unlike traditional x-ray sources that optimize for a characteristic atomic transition (often the n = 2 → n = 1 transition in ionized, He-like atoms), the design presented here maximizes the total photon flux by optimizing for intense, broadband Bremsstrahlung radiation. Three experiments were performed with identical targets, including a uranium x-ray source foil and a tungsten substrate with a narrow (25 µm wide) collimating slit to produce a quasi-1D x-ray source. Two experiments were performed using 12 beams from the NIF laser, each delivering approximately 46 kJ of laser energy but with different laser spatial profiles. This pair yielded similar temporal x-ray emission profiles, spatial resolution, and inferred hot electron temperature. A third experiment with only 6 beams delivering approximately 25 kJ produced a lower hot electron temperature and significantly lower x-ray flux, as well as poorer spatial resolution. The data suggest that laser pointing jitter may have affected the location and intensity of the emitting plasma, producing an emission volume that was not well centered behind the collimating slit and lower intensity than designed. However, the 12-beam design permits x-ray radiography through highly attenuating samples, where lower energy line-emission x-ray sources would be nearly completely attenuated.

7.
Rev Sci Instrum ; 89(10): 10G118, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399837

ABSTRACT

The Modulation Transfer Function (MTF) is an established means for characterizing imaging performance of X-ray radiography systems. We report on experiments using high energy, laser-driven X-ray radiography systems that assess performance using MTF values measured with the knife-edge projection method. The broadband, hard X-ray systems under study use line-projection imaging produced by narrowing the laser-generated X-ray source with a slit. We find that good contrast resolution can be achieved (the MTF = 0.5 at 75 µm wavelength) and that this performance is reproduced on different laser facilities. We also find that the MTF is sensitive both to the thickness of the line-projection slit and to the backing material thickness under the knife-edge. Both these sensitivities are due to a common mechanism, namely induced changes in the spectrally-averaged spatial widths of the X-ray source. The same line-projection system is also used on experimental campaigns measuring Rayleigh-Taylor instability growth by dynamically imaging sinusoidal, high Z micro-targets with wavelengths of 100 µm or less. By applying the measured MTF values to correct the ripple target contrast measurements, we can predict ripple growth to approximately 10% accuracy.

8.
Appl Opt ; 56(24): 6982-6987, 2017 Aug 20.
Article in English | MEDLINE | ID: mdl-29048046

ABSTRACT

We report a new method using high-stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond time scales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650 nm). Calibrations performed with two Axis Photonique streak cameras using the Photonis P820PSU streak tube demonstrated responses that qualitatively follow the photocathode response. Peak sensitivities were one photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.

9.
Phys Rev Lett ; 119(5): 055001, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28949745

ABSTRACT

We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measured via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.

10.
Nat Commun ; 7: ncomms11899, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27291065

ABSTRACT

Astrophysical flows exhibit rich behaviour resulting from the interplay of different forms of energy-gravitational, thermal, magnetic and radiative. For magnetic cataclysmic variable stars, material from a late, main sequence star is pulled onto a highly magnetized (B>10 MG) white dwarf. The magnetic field is sufficiently large to direct the flow as an accretion column onto the poles of the white dwarf, a star subclass known as AM Herculis. A stationary radiative shock is expected to form 100-1,000 km above the surface of the white dwarf, far too small to be resolved with current telescopes. Here we report the results of a laboratory experiment showing the evolution of a reverse shock when both ionization and radiative losses are important. We find that the stand-off position of the shock agrees with radiation hydrodynamic simulations and is consistent, when scaled to AM Herculis star systems, with theoretical predictions.

11.
Rev Sci Instrum ; 86(3): 033502, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25832224

ABSTRACT

We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 µm spatial resolution. Optical trapping of 10 ± 4 µm oil droplets in vacuum was demonstrated, over timescales of >1 h at extended distances of ∼40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ∼7 µm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (10(17) W cm(-2)) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.

12.
Appl Opt ; 54(36): 10592-8, 2015 Dec 20.
Article in English | MEDLINE | ID: mdl-26837022

ABSTRACT

We report on the design and testing of a multiwavelength interferometry system for the Orion laser facility based upon the use of self-path matching Wollaston prisms. The use of UV corrected achromatic optics allows for both easy alignment with an eye-safe light source and small (∼ millimeter) offsets to the focal lengths between different operational wavelengths. Interferograms are demonstrated at wavelengths corresponding to first, second, and fourth harmonics of a 1054 nm Nd:glass probe beam. Example data confirms the broadband achromatic capability of the imaging system with operation from the UV (263 nm) to visible (527 nm) and demonstrates that features as small as 5 µm can be resolved for object sizes of 15 by 10 mm. Results are also shown for an off-harmonic wavelength that will underpin a future capability. The primary optics package is accommodated inside the footprint of a ten-inch manipulator to allow the system to be deployed from a multitude of viewing angles inside the 4 m diameter Orion target chamber.

13.
Rev Sci Instrum ; 83(10): 10D732, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126904

ABSTRACT

The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

14.
Phys Rev Lett ; 105(20): 205003, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21231241

ABSTRACT

We report on experimental investigations into strong, laser-driven, radiative shocks in cluster media. Cylindrical shocks launched with several joules of deposited energy exhibit strong radiative effects including rapid deceleration, radiative preheat, and shell thinning. Using time-resolved propagation data from single-shot streaked Schlieren measurements, we have observed temporal modulations on the shock velocity, which we attribute to the thermal cooling instability, a process which is believed to occur in supernova remnants but until now has not been observed experimentally.

15.
Phys Rev Lett ; 100(5): 055001, 2008 Feb 08.
Article in English | MEDLINE | ID: mdl-18352379

ABSTRACT

Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, epsilon, as a function of time for comparison with radiation-hydrodynamics simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...