Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Org Biomol Chem ; 20(4): 773-777, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34991153

ABSTRACT

Herein, we present a tandem aza-Michael addition-vinylogous aldol condensation strategy for the synthesis of N-bridged pyridine fused quinolone derivatives from quinolones and ynones. The presented tandem transformation features the construction of C-N and CC bonds in a single operation, under transition metal-free conditions. The wide substrate scope and gram scale synthesis of pyridine fused quinolone derivatives expand the synthetic value of the presented protocol.

2.
Bioorg Chem ; 115: 105210, 2021 10.
Article in English | MEDLINE | ID: mdl-34332231

ABSTRACT

A simple and efficient protocol was developed to synthesize a new library of thiazolidine-4-one molecular hybrids (4a-n) via a one-pot multicomponent reaction involving 5-substituted phenyl-1,3,4-thiadiazol-2-amines, substituted benzaldehydes and 2-mercaptoacetic acid. The synthesized compounds were evaluated in vitro for their antidiabetic activities through α-glucosidase and α-amylase inhibition as well as their antioxidant and antimicrobial potentials. Compound 4e exhibited the most promising α-glucosidase and α-amylase inhibition with an IC50 value of 2.59 µM, which is ~1.5- and 14-fold superior as compared to the standard inhibitor acarbose. Structure-activity relationship (SAR) analysis revealed that the nature and position of substituents on the phenyl rings had a significant effect on the inhibitory potency.


Subject(s)
Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Thiadiazoles/pharmacology , Thiazolidines/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/chemistry , Thiazolidines/chemical synthesis , Thiazolidines/chemistry , alpha-Amylases/metabolism
3.
Anticancer Agents Med Chem ; 21(10): 1228-1239, 2021.
Article in English | MEDLINE | ID: mdl-32990543

ABSTRACT

BACKGROUND: The persistence of breast cancer as the leading cause of mortality among women, coupled with drug resistance to tamoxifen, the standard endocrine therapy for the disease, exacts continuous attention. To this effect, molecular hybridisation offers an attractive route to drugs with improved bioactivity profiles. OBJECTIVE: The primary goal of this study was to examine the potential of 1H-1,2,3-triazole linked quinolineisatin molecular hybrids as drug candidates against breast cancer and Methicillin-Resistant Staphylococcus aureus (MRSA) cells. METHODS: The quinoline-isatin hybrids were synthesised via click chemistry-mediated molecular hybridisation strategy. Anti-breast cancer activity was determined in 3-(4,5-dimethylthiazol-z-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using Estrogen-Responsive (ER+) MCF-7 and MDA-MB-231 (Triple-Negative Breast Cancer -TNBC) cells, while antimicrobial efficacy was established via the broth dilution method. Also, the toxicity profile of potent compounds to non-cancerous cells was determined using human embryonic kidney cells (HEK293) and human Red Blood Cells (hRBCs). In silico techniques were employed to predict the druglike properties of potent compounds and understand their binding modes with Estrogen Receptor alpha (ERα). RESULTS: Compounds 7g-i exhibited the strongest cytotoxicity to MCF-7 cells with IC50 values of 23.54, 23.66, and 32.50µM, respectively. Interestingly, compound 7h also emerged as the best drug candidate against MDAMB- 231 and MRSA cells with IC50=71.40µM and MIC80=27.34µM, respectively. Structure-activity relationship analysis revealed that quinoline-2-carbaldehyde and 5,7-disubstituted isatin moieties confer desirable potency. These compounds showed no significant cytotoxic or haemolytic effects on HEK293 or hRBCs in vitro at their active concentrations; hence, eliciting their selectivity for cancer cells. In silico studies also presented the drugability of potent compounds and the likely structural features interacting with amino acid residues at the ligandbinding domain of ERα. CONCLUSION: These results suggest that the identified 1H-1,2,3-triazole-linked quinoline-isatin hybrids are viable chemotypes that can be adopted as templates for the development of new anti-breast cancer and anti-MRSA agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Isatin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Quinolines/pharmacology , Triazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Isatin/chemistry , MCF-7 Cells , Microbial Sensitivity Tests , Molecular Structure , Quinolines/chemistry , Structure-Activity Relationship , Triazoles/chemistry
4.
Bioorg Med Chem Lett ; 30(22): 127544, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32920143

ABSTRACT

New indole-tethered [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one (8a-j) and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) were synthesized using [4+2] cycloaddition reactions of functionalized 1,3-diazabuta-1,3-dienes with indole-ketenes. All molecular hybrids were structurally characterized by spectroscopic techniques (IR, NMR, and HRMS) and screened for their anti-pancreatic cancer activity in vitro. The [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) showed stronger anti-pancreatic cancer activity than the [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one hybrids (8a-j) against the PANC-1 cell line. Compound 9d bearing an ortho-chlorophenyl moiety emerged as the most potent anti-pancreatic cancer agent with an IC50 value of 7.7 ± 0.4 µM, much superior to the standard drug Gemcitabine (IC50 > 500 µM). The discovery of these [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids elicits their potentials as pursuable candidates for pancreatic cancer chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Oxadiazoles/pharmacology , Pancreatic Neoplasms/drug therapy , Pyrimidines/pharmacology , Thiadiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indoles/chemistry , Molecular Structure , Oxadiazoles/chemistry , Pancreatic Neoplasms/pathology , Pyrimidines/chemistry , Structure-Activity Relationship , Thiadiazoles/chemistry
5.
Molecules ; 25(8)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32326131

ABSTRACT

The analogs of nitrogen-based heterocycles occupy an exclusive position as a valuable source of therapeutic agents in medicinal chemistry. More than 75% of drugs approved by the FDA and currently available in the market are nitrogen-containing heterocyclic moieties. In the forthcoming decade, a much greater share of new nitrogen-based pharmaceuticals is anticipated. Many new nitrogen-based heterocycles have been designed. The number of novel N-heterocyclic moieties with significant physiological properties and promising applications in medicinal chemistry is ever-growing. In this review, we consolidate the recent advances on novel nitrogen-containing heterocycles and their distinct biological activities, reported over the past one year (2019 to early 2020). This review highlights the trends in the use of nitrogen-based moieties in drug design and the development of different potent and competent candidates against various diseases.


Subject(s)
Heterocyclic Compounds/chemistry , Nitrogen/chemistry , Drug Design , Drug Development , Heterocyclic Compounds/pharmacology , Humans , Molecular Structure , Structure-Activity Relationship
6.
RSC Adv ; 10(34): 19803-19810, 2020 May 26.
Article in English | MEDLINE | ID: mdl-35520453

ABSTRACT

We synthesised materials with different loadings of vanadia on fluorapatite (V2O5/FAp), fully characterised their structural properties using various spectral techniques including TEM, BET, XRD, FT-IR, SEM and EDX and assessed their prowess as catalysts. The 2.5% V2O5/FAp exhibited excellent activity for the synthesis of novel [1,3,4]thiadiazolo[3,2-a]pyrimidines and benzo[4,5]thiazolo[3,2-a]pyrimidines. The one-pot three-component fusion reaction between chosen substrates of 1,3,4-thiadiazole-amines or 2-amino-benzothiazole, aldehydes and active methylene compounds in ethanol solvent at room temperature gave an excellent yield of products (90-97%) in a swift reaction (25-30 min). The advantages of this protocol are rapid synthesis, mild reaction conditions, green solvent, easy work-up, eco-friendliness, reusability of catalyst and no need for column chromatography.

7.
Mol Divers ; 24(2): 345-354, 2020 May.
Article in English | MEDLINE | ID: mdl-31098860

ABSTRACT

The Bi2O3 loading on ZrO2 as heterogeneous catalyst was established as an extremely efficient catalyst for the synthesis of a series of novel 5-(1-(2,4-dinitrophenyl)-3-substituted-phenyl-1H-pyrazol-4-yl)-1,2,4-triazolidine-3-thione derivatives (3a-o) with high yields (90-96%) by reaction of 1-(2,4-dinitrophenyl)-3-substituted-phenyl-1H-pyrazole-4-carbaldehydes and thiosemicarbazide using water as a greener solvent at 80 °C within 30-45 min. Materials with different percentages of Bi2O3 on ZrO2 were prepared by simple wet impregnation method. The synthesized material has been characterized by various techniques (XRD, TEM, SEM, BET). 2.5% Bi2O3/ZrO2 proved superior catalyst. The Bi2O3/ZrO2 catalyst is easily recoverable and reused up to sixth run with no loss of activity. Excellent yields, short reaction time, avoidance of hazardous solvents, and no need for chromatographic purifications are the proven advantages.


Subject(s)
Bismuth/chemistry , Pyrazoles/chemistry , Thiones/chemistry , Triazoles/chemistry , Zirconium/chemistry , Catalysis , Recycling
8.
Mol Divers ; 24(4): 889-901, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31598820

ABSTRACT

Use of cheaper and recyclable materials contributes positively to economic growth with environmental sustainability. We report the prospect of utilizing red brick clay as catalyst, which exhibited excellent activity in rapid one-pot four-component condensation of 1,2,4,5-tetrasubstituted imidazoles with high conversion and yields (91-96%) in aqueous medium at 60 °C in short reaction times (25-40 min). The red brick clay material was fully characterized by XRD, FT-IR, SEM, TEM, EDX and BET analyses. Red brick clay consisted of oxides of Si (20.38%), Fe (19.55%), Al (14.30%) and minor amounts of Ca (3.60%) and Mg (1.68%). The slate-like-shaped structure morphology and flaky appearance of inexpensive solid clay material proved competent material for the synthesis of 15 novel 1,2,4,5-tetrasubstituted imidazole derivatives. In addition, the advantages of the eco-friendly method are non-toxicity and re-usability of the catalyst. Reaction offers 78% atom economy and 84% carbon capture.


Subject(s)
Clay/chemistry , Imidazoles/chemical synthesis , Catalysis/drug effects , Green Chemistry Technology/methods , Oxides/chemistry , Silicon Dioxide/chemistry
9.
Eur J Med Chem ; 187: 111921, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31835168

ABSTRACT

The emergence of disease and dearth of effective pharmacological agents on most therapeutic fronts, constitutes a major threat to global public health and man's existence. Consequently, this has created an exigency in the search for new drugs with improved clinical utility or means of potentiating available ones. To this end, accumulating empirical evidence supports molecular target therapy as a plausible egress and, ß-glucuronidase (ßGLU) - a lysosomal acid hydrolase responsible for the catalytic deconjugation of ß-d-glucuronides has emerged as a viable molecular target for several therapeutic applications. The enzyme's activity level in body fluids is also deemed a potential biomarker for the diagnosis of some pathological conditions. Moreover, due to its role in colon carcinogenesis and certain drug-induced dose-limiting toxicities, the development of potent inhibitors of ßGLU in human intestinal microbiota has aroused increased attention over the years. Nevertheless, although our literature survey revealed both natural products and synthetic scaffolds as potential inhibitors of the enzyme, only few of these have found clinical utility, albeit with moderate to poor pharmacokinetic profile. Hence, in this review we present a compendium of exploits in the present millennium directed towards the inhibition of ßGLU. The aim is to proffer a platform on which new scaffolds can be modelled for improved ßGLU inhibitory potency and the development of new therapeutic agents in consequential.


Subject(s)
Glucuronidase/antagonists & inhibitors , Glycoproteins/pharmacology , Dose-Response Relationship, Drug , Glucuronidase/metabolism , Glycoproteins/chemistry , Humans , Molecular Structure , Structure-Activity Relationship
10.
Sci Rep ; 9(1): 19280, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848439

ABSTRACT

The crystal and molecular structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole 3 was reported, which was characterized by various spectroscopic techniques (FT-IR, NMR and HRMS) and single-crystal X-ray diffraction. The crystal structure 3 (C8H6ClN3S) crystallized in the orthorhombic space group Pna21 and the unit cell consisted of 8 asymmetric molecules. The unit cell parameters were a = 11.2027(2) Å, b = 7.6705(2) Å, c = 21.2166(6) Å, α = ß = γ = 90°, V = 1823.15(8) Å3, Z = 8. In addition, the structural geometry (bond lengths, bond angles, and torsion angles), the electronic properties of mono and dimeric forms of compound 3 were calculated by using the density functional theory (DFT) method at B3LYP level 6-31+ G(d,p), 6-31++ G(d,p) and 6-311+ G(d,p) basis sets in ground state. A good correlation was found (R2 = 0.998) between the observed and theoretical vibrational frequencies. Frontier molecular orbitals (HOMO and LUMO) and Molecular Electrostatic Potential map of the compound was produced by using the optimized structures. The NBO analysis was suggested that the molecular system contains N-H…N hydrogen bonding, strong conjugative interactions and the molecule become more polarized owing to the movement of π-electron cloud from donor to acceptor. The calculated structural and geometrical results were in good rational agreement with the experimental X-ray crystal structure data of 1,3,4-thiadiazol-2-amine, 3. The compound 3 exhibited n→π* UV absorption peak of UV cutoff edge, and great magnitude of the first-order hyperpolarizability was observed. The obtained results suggest that compound 3 could have potential application as NLO material. Therefore, this study provides valuable insight experimentally and theoretically, for designing new chemical entities to meet the demands of specific applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...