Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 62(6): 783-792, 2020 06.
Article in English | MEDLINE | ID: mdl-32078788

ABSTRACT

Polymorphism at the 17q21 gene locus and wheezing responses to rhinovirus (RV) early in childhood conspire to increase the risk of developing asthma. However, the mechanisms mediating this gene-environment interaction remain unclear. In this study, we investigated the impact of one of the 17q21-encoded genes, ORMDL3 (orosomucoid-like 3), on RV replication in human epithelial cells. ORMDL3 knockdown inhibited RV-A16 replication in HeLa, BEAS-2B, A549, and NCI-H358 epithelial cell lines and primary nasal and bronchial epithelial cells. Inhibition varied by RV species, as both minor and major group RV-A subtypes RV-B52 and RV-C2 were inhibited but not RV-C15 or RV-C41. ORMDL3 siRNA did not affect expression of the major group RV-A receptor ICAM-1 or initial internalization of RV-A16. The two major outcomes of ORMDL3 activity, SPT (serine palmitoyl-CoA transferase) inhibition and endoplasmic reticulum (ER) stress induction, were further examined: silencing ORMDL3 decreased RV-induced ER stress and IFN-ß mRNA expression. However, pharmacologic induction of ER stress and concomitant increased IFN-ß inhibited RV-A16 replication. Conversely, blockade of ER stress with tauroursodeoxycholic acid augmented replication, pointing to an alternative mechanism for the effect of ORMDL3 knockdown on RV replication. In comparison, the SPT inhibitor myriocin increased RV-A16 but not RV-C15 replication and negated the inhibitory effect of ORMDL3 knockdown. Furthermore, lipidomics analysis revealed opposing regulation of specific sphingolipid species (downstream of SPT) by myriocin and ORMDL3 siRNA, correlating with the effect of these treatments on RV replication. Together, these data revealed a requirement for ORMDL3 in supporting RV replication in epithelial cells via SPT inhibition.


Subject(s)
Epithelial Cells/virology , Membrane Proteins/physiology , Rhinovirus/physiology , Virus Replication , A549 Cells , Asthma/etiology , Bronchi/cytology , Cells, Cultured , Chromosomes, Human, Pair 17/genetics , Endoplasmic Reticulum Stress , Fatty Acids, Monounsaturated/pharmacology , Genetic Predisposition to Disease , Genotype , HeLa Cells , Humans , Interferon-beta/biosynthesis , Interferon-beta/genetics , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Nasal Mucosa/cytology , Picornaviridae Infections/complications , RNA Interference , RNA, Small Interfering/genetics , Recombinant Proteins/metabolism , Rhinovirus/genetics , Serine C-Palmitoyltransferase/antagonists & inhibitors , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/metabolism , Taurochenodeoxycholic Acid/pharmacology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...