Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 259(Pt 2): 129342, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38216009

ABSTRACT

The current study investigated the potential of utilizing wine lees extract (WLE) from red wine to enhance the sustainability and cost-effectiveness of xanthan gum (XG). A novel hydrogel system was successfully generated by cross-linking WLE and XG. Response surface methodology (RSM) was used to thoroughly analyze the characteristics of this novel hydrogel to understand its behavior and possible applications. Consistency index (K), flow behavior index (n), water holding capacity (%), and oil binding capacity (%) of the cross-linked hydrogels were optimized, and the best formulation was determined to be 0.81 % XG + 0.67 % WLE and crosslink temperature of 47 °C. The addition of WLE (0-1 % w/v) to different concentrations of XG (0-1 % w/v) was found to have a notable impact on the rheological properties, but changes in cross-link temperature (45-65 °C) did not have a significant effect. The activation energy was increased by incorporating WLE at XG concentration above 0.5 %, indicating a more robust and stable structure. FTIR and SEM analyses confirmed the chemical bonding structure of the optimum hydrogel. Incorporating WLE could significantly improve the functional properties of XG hydrogels, allowing the development of healthier product formulations.


Subject(s)
Hydrogels , Wine , Hydrogels/chemistry , Polysaccharides, Bacterial/chemistry , Temperature , Rheology
2.
J Sci Food Agric ; 104(3): 1357-1366, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37776325

ABSTRACT

BACKGROUND: The purpose of this study was to evaluate the potential of incorporating wine lees (WL), an inexpensive and widely available high-value winery waste product, into gelatin-based jellies to improve their technological and functional properties. We also aimed to evaluate the suitability of WL as a jelly colorant by comparing it with a commercial colorant. RESULTS: Wine lees were characterized for their anthocyanin, phenolic, antioxidant, and mineral content. Subsequently, physicochemical, functional, textural, rheological, and thermal analyses were conducted on soft candies containing 21, 14, and 7 g kg-1 WL (labeled as WL30, WL20, and WL10, respectively). The total phenolic, anthocyanin, antioxidant, and cupric-reducing antioxidant capacity (CUPRAC) values of WL30 were determined as 57.80 ± 6.12 mg gallic acid equivalent per kilogram (GAE kg-1 ), 17.58 ± 0.36 mg malvidin-3-glucoside equivalent kg-1 , 0.04 ± 0.01 µg mL-1 , and 45.55 ± 1.00 mmol L-1 Trolox equivalent (TE), respectively. The control sample had the best rheological characteristics, including K', G', and n*, as well as the greatest hardness value, followed by WL30. However, during the storage period, WL30 exhibited superior color stability and retained higher levels of phenolic and anthocyanin components in comparison with the control sample. CONCLUSION: Wine lees have the potential to be utilized as a natural colorant and alternative flavoring agent in jelly production. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Wine , Wine/analysis , Antioxidants/chemistry , Anthocyanins/analysis , Food , Phenols/analysis
3.
Int J Biol Macromol ; 258(Pt 1): 128854, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123042

ABSTRACT

The study aimed to use response surface methodology (RSM) to create and understand a novel edible film made from fish gelatin (FG). This film includes wine lees (WL) and carrageenan (CAR). The concentrations of WL (0, 1, 2, and 3 %) and CAR (0, 1, and 3 %) were considered independent variables. The process variable combinations for the optimal response functions were 1.926 % WL and 3 % CAR, forming soft and rigid films with low tensile strength (TS) and high elongation at break (EAB%). Based on the evaluation of each response, FG film had the highest TS value, FG/CAR(3 %) film had the maximum EAB, and FG/WL (3 %)/CAR (3 %) film had the lowest vapor permeability (WVP) and the highest opacity (OP). The incorporation of WL considerably improved the functional properties of these films, enabling strong antioxidant activity and high phenolic content. Characterization of the films with analytical techniques: Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis demonstrated a considerable interaction between WL and FG, indicating a high level of compatibility between the two substances. Our data suggest that the formulation of edible films can be adjusted to fit the specific requirements of the design.


Subject(s)
Edible Films , Wine , Animals , Gelatin/chemistry , Carrageenan/chemistry , Tensile Strength , Permeability , Fishes
4.
Int J Biol Macromol ; 220: 627-637, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35995178

ABSTRACT

Anthocyanins were extracted from a winery solid by-product (Vinasse) and added to fish gelatin (FG) and polyvinyl alcohol (PVA) matrices to create freshness monitoring labels. Three different colorimetric indicator smart films [PWE = polyvinyl alcohol with wine extract (WE), FWE = fish gelatin with WE, and PFWE = polyvinyl alcohol and FG blended film with WE] were generated and examined for their suitability to monitor the freshness of shrimp. The mechanical and optical properties, ammonia sensitivity, and colorimetric analysis of smart films were determined. Fourier transform-infrared spectroscopy (FTIR) was used to evaluate the interaction of anthocyanins with FG and PVA and changes in the film's chemical composition with storage. The film surfaces were characterized with atomic force microscopy (AFM). The incorporation of WE enhanced the films' flexibility by providing plasticizer and surfactant properties. The PWE film showed the best color stability. The FWE film showed the least amount of total color change with exposure to ammonia gas and was deemed suitable for refrigerated food packaging. The color of all indicator films showed significant changes suggesting that PWE, FWE, and PFWE films can be utilized in the intelligent packaging application for protein-rich foods to detect spoilage.


Subject(s)
Anthocyanins , Polyvinyl Alcohol , Ammonia , Animals , Anthocyanins/chemistry , Colorimetry , Fishes , Food Packaging/methods , Gelatin/chemistry , Hydrogen-Ion Concentration , Plant Extracts/chemistry , Plasticizers , Polyvinyl Alcohol/chemistry , Surface-Active Agents
5.
Food Chem ; 393: 133348, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35661603

ABSTRACT

In this study, fish skin gelatin (FG) obtained from sea bream (Sparus aurata) was evaluated as an alternative to mammalian gelatin. Improvement in rheological properties of FG was attempted with addition of grape pomace (GP), pomegranate peel (PP), and green tea (GT) extracts, all of which are agricultural wastes rich in phenolic components. These additives were added at ratios of 20%, 13.3%, 10%, and 6.7% to determine the best formulation. Melting and gelling temperatures, kgel, gel strength, and tmodel values of samples were measured. 20% GP added fish gelatin (OG) had optimum rheological properties. Melting temperatures of BG, OG, and FG were 31.64 ± 0.28, 33.80 ± 0.54, 25.78 ± 0.24 °C, respectively. The addition of GP caused a 14% increase in Tg by increasing the intermolecular interactions of FG. GP is important in that it provides functional properties and structural improvement of FG, making it an alternative to BG and facilitating its use in confectionery industry.


Subject(s)
Gelatin , Sea Bream , Animals , Colloids , Gelatin/chemistry , Gels/chemistry , Mammals , Plant Extracts , Rheology
6.
Int J Biol Macromol ; 207: 841-849, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35358576

ABSTRACT

The potential for the use of rice bran, an agricultural waste, as a substrate in the manufacture of gellan gum was examined. Using a standard strain of Sphingomonas paucimobilis (ATCC 31461) and rice bran substrate, gellan gum was produced under optimized conditions. The optimal yield of gellan gum using rice bran substrate was found to be 11.96 g L-1 with 5% glucose, 10% inoculum, and a mixing speed of 300 rpm. Native gum was found to have a consistency index of 2.00 Pa.sn. The viscosity of the gum was found to be extremely stable when exposed to thermal stress. Concerning the rheological characteristics, the Herschel-Bulkley model offered a more realistic representation of the flow characteristics of gum solutions. The synthesized gums were mostly composed of glucose, rhamnose, and glucuronic acid. The acetic acid content of gellan gums was 2.95%, while the molecular weight was 2.88 × 105 Da. Characterization of native gellan gums by UV-Vis spectroscopy, SEM, TEM and FTIR spectroscopy is also presented.


Subject(s)
Oryza , Fermentation , Glucose , Polysaccharides, Bacterial , Rheology
7.
Electron. j. biotechnol ; 30: 18-23, nov. 2017. ilus, tab, graf
Article in English | LILACS | ID: biblio-1021065

ABSTRACT

Background: The aim of the present study was to evaluate gum productivity of a local strain, Xanthomonas axonopodis pv. vesicatoria, isolated from pepper plant, and its rheological behavior for the first time compared to the standard strain, Xanthomonas campestris DSM 19000 (NRRL B-1459). The influence of operational conditions (agitation rate and inoculum volume) on gum production and rheological properties of gums from the Xanthomonas strains were investigated. Results: The isolated strain of Xanthomonas showed similar xanthan yield compared to the standard strain. Furthermore, this study clearly confirmed that gum yield depended on bacterial strain, agitation rate, and inoculum size. The most suitable conditions for the gum production in an orbital shaker in terms of agitation rate and inoculum size were 180 rpm and 5%, respectively, resulting in an average production of 10.96 and 11.19 g/L for X. axonopodis pv.vesicatoria and X. campestris DSM 19000, respectively. Regarding the rheological properties, Ostwald-de-Waele and power law models were used to describe flow and oscillatory behavior of the gum solutions, respectively. Consistency of the novel gum solution remarkably was much higher than the commercial xanthan gum solution. Flow and oscillatory behavior and their temperature ramps showed that weak gel-like structure could be obtained with less gum concentrations when the novel gum was used. Conclusion: Therefore, yield and technological properties of the aqueous solutions of the exopolysaccharide synthesized by X. axonopodis pv. vesicatoria were observed to be more suitable for industrial production.


Subject(s)
Polysaccharides, Bacterial/biosynthesis , Xanthomonas vesicatoria/metabolism , Xanthomonas axonopodis/metabolism , Rheology , Temperature , Viscosity , Biodegradation, Environmental , Capsicum , Xanthomonas campestris/metabolism
8.
Asian-Australas J Anim Sci ; 28(9): 1281-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26323518

ABSTRACT

This study was performed to determine the effect of field pea silages which were the organic acid (OA) alternative of oregano and cinnamon essential oils on fermentation quality and aerobic stability. Whole crop pea was harvested at full pod stage and wilted in the laboratory at the 48 h. The chopped pea was mixed and divided into equal portions allocated to five groups: CON (non-treated), distilled water, denoted as control group; OA group, a mixture of 60% formic acid, 20% sodium formate and 20% water applied at a rate of 5 g/kg fresh forage (Silofarm Liquid, Farmavet); origanum (ORE) group, Origanum onites essential oil at 400 mg/kg fresh forage; cinnamon (CIN) group, cinnamon essential oil at 400 mg/kg fresh forage; origanum+cinnamon (ORECIN) group, a mixture of ORE and CIN applied at an equal rate of 400 mg/kg fresh forage. Cinnamon decreased acetic acid (AA), ammonia nitrogen (NH3-N) and weight loss (WL) at the end of 60 days silage. Crude protein (CP) and dry matter (DM) increased by cinnamon essential oil. Yeasts were not detected in any treatments, including the control, after 7 days of air exposure. The CO2 amount decreased and the formation mold was inhibited in the aerobic period by the addition of cinnamon oil. Oregano did not show a similar effect, but when it was used with cinnamon, it showed synergic effect on AA and during aerobic period, it showed antagonistic effect on mold formation and DM losses. It was found in this study that cinnamon can be an alternative to organic acids.

9.
Nat Prod Res ; 26(21): 2024-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22132714

ABSTRACT

Percentages of crude oil, protein, fibre and ash of grape seeds obtained from Turkish cultivars were of the ranges 5.40-10.79, 5.24-7.54, 17.6-27.1, and 1.2-2.6, respectively. The highest crude oil, crude protein and crude fibre were determined in Siyah pekmezlik, Karadimrit and Antep grape seeds. The energy values of seeds were established to be between 102.28 and 148.07 kcal g(-1). Potassium and calcium contents of seed samples were found to be at high levels compared to sodium. The seeds contained 686-967 ppm of Na, 2468-3618 ppm of K and 2373-4127 ppm of Ca. The refractive index, relative density, acidity, saponification value, unsaponifiable matter and iodine value of seed oils were determined to be in the ranges 1.474-1.477 [Formula: see text], 0.909-0.934 25/25°C, 0.74-1.24%, 181-197, 0.91-1.66%, and 126-135, respectively. The main fatty acids were of the ranges 60.7-68.5% linoleic, 16.1-23.4% oleic and 8.0-10.2% palmitic. The highest percentages of linoleic acid (68.5%) was determined in Siyah pekmezlik seed oil.


Subject(s)
Fatty Acids/analysis , Plant Oils/analysis , Seeds/chemistry , Vitis/chemistry , Calcium/analysis , Linoleic Acid/analysis , Plant Oils/chemistry , Plant Proteins/analysis , Potassium/analysis , Refractometry , Turkey
10.
J Med Food ; 14(10): 1223-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21548804

ABSTRACT

The effect of irradiation (2.5, 4.0, 5.5, and 7.0 kGy) on chemical properties and volatile contents of linseed was investigated. Consistent decreases were observed in both protein and oil content of the irradiated linseed samples with increasing irradiation doses. The ash content of the irradiated linseed samples increased significantly (P<.05) with increasing irradiation doses except for 5.5 kGy. Irradiation treatment caused irregular changes in palmitic and stearic acid content. Although styrene and p-xylene content decreased as a result of irradiation, 1-hexanol content only decreased at 7.0 kGy. Benzaldehyde, p-cymene, and nonanol were not determined at irradiation doses above 4.0 kGy.


Subject(s)
Flax/radiation effects , Food Irradiation/methods , Gamma Rays , Cymenes , Dose-Response Relationship, Radiation , Hexanols/analysis , Hexanols/radiation effects , Monoterpenes/analysis , Monoterpenes/radiation effects , Palmitic Acid/analysis , Palmitic Acid/radiation effects , Stearic Acids/analysis , Stearic Acids/radiation effects , Styrene/analysis , Styrene/radiation effects , Xylenes/analysis , Xylenes/radiation effects
11.
Int J Food Sci Nutr ; 60(5): 365-73, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19337877

ABSTRACT

Olea europea L. fruits were evaluated for weight, moisture, ash, crude protein, crude oil, energy, crude fibre, roundness, resistance against extra force and product density. The relative density, refractive index, free fatty acids, peroxide value, iodine value and unsaponifiables were determined in the olive oils. The main fatty acids identified by gas chromatography were palmitic acid (16:0), palmitoleic acid (16:1), stearic acid (18:0), oleic acid (18:1) and linoleic acid (18:2). Of the identified fatty acids, lauric acid (12:0), linolenic acid (18:3), arachidic acid (20:0), eicosenoic acid (20:1), behenic acid (22:0) and lignoseric acid (24:0) were found in trace amounts. As expected, the oleic acid content was the major fatty acid of olive oil. Oleic acid was represented in much higher concentrations than the other acids. The product roundness, resistance against extra force, product density and weight of 100 fruit were established as technological characteristics in olive fruit. The damage energy and the unit of volume deformation energy of the Memecik and Tavsanyüregi varieties were 1.36×10(-3) J and 3.59×10(-4) J/mm(3) and 1.89×10(-3) J and 5.10×10(-4) J/mm(3), respectively. The fruits showed a similar composition, and both fruit and oil contained unsaturated fatty acids.


Subject(s)
Fatty Acids, Unsaturated/analysis , Fatty Acids/analysis , Food Quality , Fruit/chemistry , Hardness , Olea/chemistry , Plant Oils/chemistry , Diet , Dietary Fats/analysis , Humans , Olea/classification , Oleic Acid/analysis , Olive Oil , Species Specificity , Stress, Mechanical , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL
...