Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 98(1): 842-53, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23987420

ABSTRACT

Extruded cereals mainly composed of starch and enriched in fibers were produced with two types of base recipes: (i) one recipe mainly composed of wheat flour and (ii) one recipe mainly composed of corn and soya flours. The addition of fibers was performed through the use of oat bran concentrate or wheat bran, up to 32% of the recipe. The structure of the extrudates, assessed by X-ray tomography, pointed out the decrease of porosity and of mean cells size with the increase of the total dietary fibers content of the recipe. The hardness of the products, i.e. the maximum stress determined by a compression test, was linked to their porosity. The Gibson-Ashby relationship could be applied and the fit was even improved when considering the walls of the solid foam as composite materials. Fibers and proteins can be indeed considered as particles dispersed in the starchy phase. This work thus shows the impact of the structure of the extrudates on their mechanical properties. The structure is taken into account at different length scales; at the level of the porous structure and at the level of the phase of the main biopolymers present in the recipe (starch, proteins and fibers). The mechanical behavior of these products is then discussed according to their characteristics of composite solid foams.


Subject(s)
Dietary Fiber , Edible Grain/chemistry , Food Handling/methods , Starch/chemistry , Mechanical Phenomena , Porosity , Solubility
2.
J Sci Food Agric ; 91(14): 2582-6, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21674508

ABSTRACT

BACKGROUND: Beverage powders can exhibit caking during storage due to high temperature and moisture conditions, leading to consumer dissatisfaction. Caking problems can be aggravated by the presence of sensitive ingredients. The caking behaviour of cocoa beverage powders, with varying amounts of a carbohydrate sensitive ingredient, as affected by climate conditions was studied in this work. Sorption isotherms of beverage powders were determined at water activities (a(w) ) ranging from 0.1 to 0.6 in a moisture sorption analyser by gravimetry and fitted to the Brunauer-Emmett-Teller (BET) or the Guggenheim-Anderson-de Boer (GAB) equation. Glass transition temperatures (T(g) ) at several a(w) were analysed by differential scanning calorimetry and fitted to the Gordon-Taylor equation. Deduced T(g) = f(a(w) ) functions helped to identify stability or caking zones. Specific experimental methods, based on the analysis of mechanical properties of powder cakes formed under compression, were used to quantify the degree of caking. Pantry tests complemented this study to put in evidence the visual perception of powder caking with increasing a(w) . RESULTS: The glass transition approach was useful to predict the risks of caking but was limited to products where T(g) can be measured. On the other hand, quantification of the caking degree by analysis of mechanical properties allowed estimation of the extent of degradation for each product. CONCLUSION: This work demonstrated that increasing amounts of a carbohydrate sensitive ingredient in cocoa beverages negatively affected their storage stability.


Subject(s)
Beverages/analysis , Cacao/chemistry , Food Additives/chemistry , Food Handling , Water/analysis , Adsorption , Calorimetry, Differential Scanning , Food Additives/adverse effects , Hot Temperature/adverse effects , Mechanical Phenomena , Phase Transition , Quality Control , Rheology , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...