Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(12): e33094, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948039

ABSTRACT

The unique floral fingerprint embedded within honey holds valuable clues to its geographical and botanical origin, playing a crucial role in ensuring authenticity and detecting adulteration. Honey from native Apis cerana and Heterotrigona itama bees in Karangasem, Indonesia, was examined utilizing pollen DNA metabarcoding for honey source identification. In this study, we used ITS2 amplicon sequencing to identify floral DNA in honey samples. The finding reveals distinct pollen signatures for each bee species. Results analysis showed A. cerana honey generated 179,267 sequence reads, assembled into Amplicon Sequence Variants (ASVs) with a total size of 485,932 bp and an average GC content of 59 %. H. itama honey generated 177,864 sequence reads, assembled into ASVs with a total size of 350,604 bp and an average GC content of 57 %. A. cerana honey exhibited a rich tapestry of pollen from eleven diverse genera, with Schleichera genus dominating at an impressive relative read abundance of 72.8 %. In contrast, H. itama honey displayed a remarkable mono-dominance of the Syzygium genus, accounting for a staggering 99.95 % of its pollen composition or relative read abundance, highlighting their distinct foraging preferences and floral resource utilization. Notably, all identified pollen taxa were indigenous to Karangasem, solidifying the geographical link between honey and its origin. This study demonstrates pollen DNA metabarcoding may identify honey floral sources. By using pollen profiles from different bee species and their foraging patterns, we may protect consumers against honey adulteration and promote sustainable beekeeping in Karangasem district. Future research could explore expanding the database of reference pollen sequences and investigating the influence of environmental factors on pollen composition in honey. Investigating this technology's economic and social effects on beekeepers and consumers may help promote fair trade and sustainable beekeeping worldwide.

2.
Sci Rep ; 14(1): 14122, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898099

ABSTRACT

Southern Asian flowers offer honeybees a diversity of nectar. Based on its geographical origin, honey quality varies. Traditional methods are less authentic than DNA-based identification. The origin of honey is determined by pollen, polyphenolic, and macro-microorganisms. In this study, amplicon sequencing targets macro-microorganisms in eDNA using the ITS1 region to explore honey's geographical location and authentication. The variety of honey samples was investigated using ITS1 with Illumina sequencing. For all four honey samples, raw sequence reads showed 979,380 raw ITS1 amplicon reads and 375 ASVs up to the phylum level. The highest total number of 202 ASVs up to phylum level identified Bali honey with 211,189 reads, followed by Banggi honey with 309,207 a total number of 111 ASVs, and Lombok represents only 63 ASVs up to phylum level with several read 458,984. Based on Shannon and Chao1, honey samples from Bali (B2) and (B3) exhibited higher diversity than honey from Lombok (B1) and green honey from Sabah (B4), while the Simpson index showed that Banggi honey (B4) had higher diversity. Honey samples had significant variance in mycobiome taxonomic composition and abundance. Zygosaccharomyces and Aspergillus were the main genera found in Lombok honey, with percentages of 68.81% and 29.76% respectively. Bali honey samples (B2 and B3) were identified as having a significant amount of the genus Aureobasidium, accounting for 40.81% and 25% of the readings, respectively. The microbiome composition of Banggi honey (B4) showed a high presence of Zygosaccharomyces 45.17% and Aureobasidium 35.24%. The ITS1 analysis effectively distinguishes between honey samples of different origins and its potential as a discriminatory tool for honey origin and authentication purposes.


Subject(s)
Honey , Honey/analysis , Bees/genetics , Bees/microbiology , Animals , Mycobiome/genetics , Asia, Southeastern , DNA, Intergenic/genetics , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Pollen , Islands , Southeast Asian People
3.
PLoS One ; 19(4): e0301213, 2024.
Article in English | MEDLINE | ID: mdl-38578814

ABSTRACT

Limited honey production worldwide leads to higher market prices, thus making it prone to adulteration. Therefore, regular physicochemical analysis is imperative for ensuring authenticity and safety. This study describes the physicochemical and antioxidant properties of Apis cerana honey sourced from the islands of Lombok and Bali, showing their unique regional traits. A comparative analysis was conducted on honey samples from Lombok and Bali as well as honey variety from Malaysia. Moisture content was found slightly above 20% in raw honey samples from Lombok and Bali, adhering to the national standard (SNI 8664:2018) of not exceeding 22%. Both honey types displayed pH values within the acceptable range (3.40-6.10), ensuring favorable conditions for long-term storage. However, Lombok honey exhibited higher free acidity (78.5±2.14 meq/kg) than Bali honey (76.0±1.14 meq/kg), surpassing Codex Alimentarius recommendations (≤50 meq/kg). The ash content, reflective of inorganic mineral composition, was notably lower in Lombok (0.21±0.02 g/100) and Bali honey (0.14±0.01 g/100) compared to Tualang honey (1.3±0.02 g/100). Electric conductivity, indicative of mineral content, revealed Lombok and Bali honey with lower but comparable values than Tualang honey. Hydroxymethylfurfural (HMF) concentrations in Lombok (14.4±0.11 mg/kg) and Bali (17.6±0.25 mg/kg) were slightly elevated compared to Tualang honey (6.4±0.11 mg/kg), suggesting potential processing-related changes. Sugar analysis revealed Lombok honey with the highest sucrose content (2.39±0.01g/100g) and Bali honey with the highest total sugar content (75.21±0.11 g/100g). Both honeys exhibited lower glucose than fructose content, aligning with Codex Alimentarius guidelines. The phenolic content, flavonoids, and antioxidant activity were significantly higher in Lombok and Bali honey compared to Tualang honey, suggesting potential health benefits. Further analysis by LC-MS/MS-QTOF targeted analysis identified various flavonoids/flavanols and polyphenolic/phenolic acid compounds in Lombok and Bali honey. The study marks the importance of characterizing the unique composition of honey from different regions, ensuring quality and authenticity in the honey industry.


Subject(s)
Antioxidants , Honey , Bees , Animals , Antioxidants/chemistry , Honey/analysis , Indonesia , Chromatography, Liquid , Tandem Mass Spectrometry , Minerals/analysis , Flavonoids/analysis , Sugars
4.
J Microbiol Biotechnol ; 23(4): 473-82, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23568201

ABSTRACT

The desulfurization ability of Sphingomonas subarctica T7b was evaluated using resting and immobilized cells with dibenzothiophene (DBT), alkyl DBTs, and commercial light gas oil (LGO) as the substrates. The resting cells of S. subarctica T7b degraded 239.2 mg of the initial 250 mg of DBT/l (1.36 mM) within 24 h at 27 degrees C, while 127.5 mg of 2-hydroxybiphenyl (2-HBP)/l (0.75 mM) was formed, representing a 55% conversion of the DBT. The DBT desulfurization activity was significantly affected by the aqueous-to-oil phase ratio. In addition, the resting cells of S. subarctica T7b were able to desulfurize alkyl DBTs with long alkyl chains, although the desulfurization rate decreased with an increase in the total carbon number of the alkylated DBTs. LGO with a total sulfur content of 280 mg/l was desulfurized to 152 mg/l after 24 h of reaction. Cells immobilized by entrapment with polyvinyl alcohol (PVA) exhibited a high DBT desulfurization activity, including repeated use for more than 8 batch cycles without loss of biodesulfurization activity. The stability of the immobilized cells was better than that of the resting cells at different initial pHs, higher temperatures, and for DBT biodesulfurization in successive degradation cycles. The immobilized cells were also easily separated from the oil and water phases, giving this method great potential for oil biodesulfurization.


Subject(s)
Cells, Immobilized/metabolism , Sphingomonas/metabolism , Sulfur/metabolism , Thiophenes/metabolism , Biotechnology/methods , Oils/metabolism
5.
J Biosci Bioeng ; 101(4): 322-7, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16716940

ABSTRACT

Sphingomonas subarctica T7b was isolated from soil in Toyotomi, Hokkaido, Japan as an organism capable of desulfurizing aromatic hydrocarbons in light gas oil (LGO) through enrichment culture. S. subarctica T7b could grow on mineral salt sulfur-free (MSSF) medium with the n-tetradecane oil phase containing dibenzothiophene (DBT), alkyl dibenzothiophenes (alkyl DBTs) or alkyl benzothiophenes (alkyl BTs) as the sole sulfur source and desulfurize these compounds, but could not utilize the tetradecane as a carbon source. This is the first report of a gram-negative bacterium which can desulfurize 4,6-dibutyl DBT and 4,6-dipentyl DBT. The desulfurized product of DBT produced by this strain was 2-hydroxybiphenyl, as in the case of other DBT-desulfurizing bacteria. S. subarctica T7b could desulfurize LGO and the sulfur content was decreased to 41% within 36 h.


Subject(s)
Sphingomonas/metabolism , Thiophenes/chemistry , Alkanes/chemistry , Biodegradation, Environmental , Biotechnology/methods , Hydrocarbons/chemistry , Phenol/chemistry , Soil Microbiology , Sphingomonas/enzymology , Substrate Specificity , Sulfur/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...