Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17125, 2024.
Article in English | MEDLINE | ID: mdl-38577414

ABSTRACT

Rainforest conversion and expansion of plantations in tropical regions change local microclimate and are associated with biodiversity decline. Tropical soils are a hotspot of animal biodiversity and may sensitively respond to microclimate changes, but these responses remain unexplored. To address this knowledge gap, here we investigated seasonal fluctuations in density and community composition of Collembola, a dominant group of soil invertebrates, in rainforest, and in rubber and oil palm plantations in Jambi province (Sumatra, Indonesia). Across land-use systems, the density of Collembola in the litter was at a maximum at the beginning of the wet season, whereas in soil it generally varied little. The community composition of Collembola changed with season and the differences between land-use systems were most pronounced at the beginning of the dry season. Water content, pH, fungal and bacterial biomarkers, C/N ratio and root biomass were identified as factors related to seasonal variations in species composition of Collembola across different land-use systems. We conclude that (1) conversion of rainforest into plantation systems aggravates detrimental effects of low moisture during the dry season on soil invertebrate communities; (2) Collembola communities are driven by common environmental factors across land-use systems, with water content, pH and food availability being most important; (3) Collembola in litter are more sensitive to climatic variations than those in soil. Overall, the results document the sensitivity of tropical soil invertebrate communities to seasonal climatic variations, which intensifies the effects of the conversion of rainforest into plantation systems on soil biodiversity.


Subject(s)
Arthropods , Soil , Animals , Soil/chemistry , Rainforest , Seasons , Invertebrates , Water
2.
Sci Rep ; 14(1): 9605, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671080

ABSTRACT

Jakarta Greater Area (JGA) has encountered recurrent challenges of air pollution, notably, high ozone levels. We investigate the trends of surface ozone (O3) changes from the air quality monitoring stations and resolve the contribution of meteorological drivers in urban Jakarta (2010-2019) and rural Bogor sites (2017-2019) using stepwise Multi Linear Regression. During 10 years of measurement, 41% of 1-h O3 concentrations exceeded Indonesia' s national threshold in Jakarta. In Bogor, 0.1% surpassed the threshold during 3 years of available data records. The monthly average of maximum daily 8-h average (MDA8) O3 anomalies exhibited a downward trend at Jakarta sites while increasing at the rural site of Bogor. Meteorological and anthropogenic drivers contribute 30% and 70%, respectively, to the interannual O3 anomalies in Jakarta. Ozone formation sensitivity with satellite demonstrates that a slight decrease in NO2 and an increase in HCHO contributed to declining O3 in Jakarta with 10 years average of HCHO to NO2 ratio (FNR) of 3.7. Conversely, O3 increases in rural areas with a higher FNR of 4.4, likely due to the contribution from the natural emission of O3 precursors and the influence of meteorological factors that magnify the concentration.

3.
Environ Res ; 184: 109350, 2020 05.
Article in English | MEDLINE | ID: mdl-32179268

ABSTRACT

This study examines the projected precipitation extremes for the end of 21st century (2081-2100) over Southeast Asia (SEA) using the output of the Southeast Asia Regional Climate Downscaling/Coordinated Regional Climate Downscaling Experiment - Southeast Asia (SEACLID/CORDEX-SEA). Eight ensemble members, representing a subset of archived CORDEX-SEA simulations at 25 km spatial resolution, were examined for emission scenarios of RCP4.5 and RCP8.5. The study utilised four different indicators of rainfall extreme, i.e. the annual/seasonal rainfall total (PRCPTOT), consecutive dry days (CDD), frequency of extremely heavy rainfall (R50mm) and annual/seasonal maximum of daily rainfall (RX1day). In general, changes in extreme indices are more pronounced and covering wider area under RCP8.5 than RCP4.5. The decrease in annual PRCPTOT is projected over most of SEA region, except for Myanmar and Northern Thailand, with magnitude as much as 20% (30%) under RCP4.5 (RCP8.5) scenario. The most significant and robust changes were noted in CDD, which is projected to increase by as much as 30% under RCP4.5 and 60% under RCP8.5, particularly over Maritime Continent (MC). The projected decrease in PRCPTOT over MC is significant and robust during June to August (JJA) and September to November (SON). During March to May (MAM) under RCP8.5, significant and robust PRCPTOT decreases are also projected over Indochina. The CDD changes during JJA and SON over MC are even higher, more robust and significant compared to the annual changes. At the same time, a wetting tendency is also projected over Indochina. The R50mm and RX1day are projected to increase, during all seasons with significant and robust signal of RX1day during JJA and SON.


Subject(s)
Climate Change , Asia, Southeastern , Myanmar , Seasons , Thailand
4.
Proc Natl Acad Sci U S A ; 116(52): 26382-26388, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31818944

ABSTRACT

The glaciers near Puncak Jaya in Papua, Indonesia, the highest peak between the Himalayas and the Andes, are the last remaining tropical glaciers in the West Pacific Warm Pool (WPWP). Here, we report the recent, rapid retreat of the glaciers near Puncak Jaya by quantifying the loss of ice coverage and reduction of ice thickness over the last 8 y. Photographs and measurements of a 30-m accumulation stake anchored to bedrock on the summit of one of these glaciers document a rapid pace in the loss of ice cover and a ∼5.4-fold increase in the thinning rate, which was augmented by the strong 2015-2016 El Niño. At the current rate of ice loss, these glaciers will likely disappear within the next decade. To further understand the mechanisms driving the observed retreat of these glaciers, 2 ∼32-m-long ice cores to bedrock recovered in mid-2010 are used to reconstruct the tropical Pacific climate variability over approximately the past half-century on a quasi-interannual timescale. The ice core oxygen isotopic ratios show a significant positive linear trend since 1964 CE (0.018 ± 0.008‰ per year; P < 0.03) and also suggest that the glaciers' retreat is augmented by El Niño-Southern Oscillation processes, such as convection and warming of the atmosphere and sea surface. These Papua glaciers provide the only tropical records of ice core-derived climate variability for the WPWP.

5.
Sci Rep ; 8(1): 8437, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855509

ABSTRACT

Tropical peatlands in Indonesia have been disturbed over decades and are a source of carbon dioxide (CO2) into the atmosphere by peat respiration and peatland fire. With a portable solar spectrometer, we have performed measurements of column-averaged CO2 dry-air molar mixing ratios, XCO2, in Palangka Raya, Indonesia, and quantify the emission dynamics of the peatland with use of the data for weather, fire hotspot, ground water table, local airport operation visibility and weather radar images. Total emission of CO2 from surface and underground peat fires as well as from peatland ecosystem is evaluated by day-to-day variability of XCO2. We found that the peatland fire and the net ecosystem CO2 exchange contributed with the same order of magnitude to the CO2 emission during the non-El Niño Southern Oscillation year of July 2014-August 2015.

6.
Article in English | MEDLINE | ID: mdl-27114577

ABSTRACT

Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes.


Subject(s)
Agriculture , Biodiversity , Carbon/analysis , Conservation of Natural Resources , Rainforest , Arecaceae/growth & development , Hevea/growth & development , Indonesia
SELECTION OF CITATIONS
SEARCH DETAIL
...