Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 102(5): 1186-1201, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37730958

ABSTRACT

A series of novel 1,2,3,4-tetrazines were designed and synthesized. 1 H-NMR spectroscopy, 13 C NMR spectroscopy, and HRMS were used to determine the structures of this novel compounds. Computational approaches suggested that DHFR is a putative target for the newly synthesized 11 compounds. Extensive molecular dynamics simulations followed by molecular docking simulations were employed to evaluate DHFR as a potential target protein. The anticancer activities of the compounds were evaluated against five different types of leukemia cell lines (Jurkat, Nalm-6, Reh, K562, and Molt-4) and one non-leukemic cell line (Hek293T) by MTT test in vitro and imatinib was used as a control drug. Among these compounds, 3a exhibited the best activity against all the leukemic cell lines, except Reh cell line. For Nalm-6, K562, Jurkat, and Molt-4 cell lines, IC50 values were found to be 15.98, 19.12, 23.15, and 25.80 µM, respectively. Our work focuses on the synthesis of original and novel 1,2,3,4-tetrazine derivatives while contributing to the ongoing effort to discover more potent new antileukemia agents.

2.
Turk J Chem ; 46(1): 86-102, 2022.
Article in English | MEDLINE | ID: mdl-38143894

ABSTRACT

Different derivatives of imatinib were synthesized by a 3-step reaction method. The structures of the new compounds were characterized by spectroscopic methods. For quantitative evaluation of the biological activity of the compounds, MTT assays were performed, where four BCR-ABL negative leukemic cell lines (Jurkat, Reh, Nalm-6 and Molt-4), one BCR-ABL positive cell line (K562), and one non-leukemic cell line (Hek293T) were incubated with various concentrations of the derivatives. Although imatinib was specifically designed for the BCR-ABL protein, our results showed that it was also effective on BCR-ABL negative cell lines except for Reh cell line. Compound 9 showed lowest IC50 values against Nalm-6 cells as 1.639 µM, also the values of Compound 10 for each cell were very close to imatinib. Molecular docking simulations suggest that except for compound 6, the compounds prefer a DFG-out conformation of the ABL kinase domain. Among them, compound 10 has the highest affinity for ABL kinase domain that is close to the affinity of imatinib. The common rings between compound 10 and imatinib adopt exactly the same conformation and same type of interactions in the ATP binding site with the ABL kinase domain.

SELECTION OF CITATIONS
SEARCH DETAIL
...