Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Ecol Res ; 69: 69-81, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38152344

ABSTRACT

Panarchy is a heuristic of complex system change rooted in resilience science. The concept has been rapidly assimilated across scientific disciplines due to its potential to envision and address sustainability challenges, such as climate change and regime shifts, that pose significant challenges for humans in the Anthropocene. However, panarchy has been studied almost exclusively via qualitative research. Quantitative approaches are scarce and preliminary but have revealed novel insights that allow for a more nuanced understanding of the heuristic and resilience science more generally. In this roadmap we discuss the potential for future quantitative approaches to panarchy. Transdisciplinary development of quantitative approaches, combined with advances in data accrual, curation and machine learning, may build on current tools. Combined with qualitative research and traditional approaches used in ecology, quantification of panarchy may allow for broad inference of change in complex systems of people and nature and provide critical information for management of social-ecological systems.

2.
Ecol Soc ; 22(3): 1-17, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29333174

ABSTRACT

Quantitative approaches to measure and assess resilience are needed to bridge gaps between science, policy and management. In this paper, we revisit definitions of resilience and suggest a quantitative framework for assessing ecological resilience sensu Holling (1973). Ecological resilience as an emergent ecosystem phenomenon can be decomposed into complementary attributes (scales, adaptive capacity, thresholds and alternative regimes) that embrace the complexity inherent to ecosystems. Quantifying these attributes simultaneously provides opportunities to move from the assessment of specific resilience within an ecosystem towards a broader measurement of its general resilience. We provide a framework, based on testable hypotheses, which allows assessment of complementary attributes of ecological resilience. By implementing the framework in adaptive approaches to management, inference and modeling, key uncertainties can be reduced incrementally over time and learning about the general resilience of dynamic ecosystems maximized. Such improvements are needed because uncertainty about global environmental change impacts and their effects on resilience is high. Improved resilience assessments will ultimately facilitate an optimized use of limited resources for management.

3.
J Environ Manage ; 183(Pt 2): 353-360, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27206806

ABSTRACT

Adaptive governance and adaptive management have developed over the past quarter century in response to institutional and organizational failures, and unforeseen changes in natural resource dynamics. Adaptive governance provides a context for managing known and unknown consequences of prior management approaches and for increasing legitimacy in the implementation of flexible and adaptive management. Using examples from iconic water systems in the United States, we explore the proposition that adaptive management and adaptive governance are useful for evaluating the complexities of trade-offs among ecosystem goods and services.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Northwestern United States , Polyethylene Glycols , Recreation , Rivers , Socioeconomic Factors , Thiadiazoles , Wetlands
4.
J Environ Manage ; 165: 81-87, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26426283

ABSTRACT

Adaptive governance provides the capacity for environmental managers and decision makers to confront variable degrees of uncertainty inherent to complex social-ecological systems. Current theoretical conceptualizations of adaptive governance represent a series of structures and processes best suited for either adapting or transforming existing environmental governance regimes towards forms flexible enough to confront rapid ecological change. As the number of empirical examples of adaptive governance described in the literature grows, the conceptual basis of adaptive governance remains largely under theorized. We argue that reconnecting adaptive governance with foundational concepts of ecological resilience-specifically Panarchy and the adaptive cycle of complex systems-highlights the importance of episodic disturbances and cross-scale interactions in triggering reorganizations in governance. By envisioning the processes of adaptive governance through the lens of Panarchy, scholars and practitioners alike will be better able to identify the emergence of adaptive governance, as well as take advantage of opportunities to institutionalize this type of governance in pursuit of sustainability outcomes. The synergistic analysis of adaptive governance and Panarchy can provide critical insight for analyzing the role of social dynamics during oscillating periods of stability and instability in social-ecological systems. A deeper understanding of the potential for cross-scale interactions to shape adaptive governance regimes may be useful as society faces the challenge of mitigating the impacts of global environmental change.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Government , Decision Making , Ecology , Humans
5.
Annu Rev Environ Resour ; 41: 399-423, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-32607083

ABSTRACT

Transformative governance is an approach to environmental governance that has the capacity to respond to, manage, and trigger regime shifts in coupled social-ecological systems (SESs) at multiple scales. The goal of transformative governance is to actively shift degraded SESs to alternative, more desirable, or more functional regimes by altering the structures and processes that define the system. Transformative governance is rooted in ecological theories to explain cross-scale dynamics in complex systems, as well as social theories of change, innovation, and technological transformation. Similar to adaptive governance, transformative governance involves a broad set of governance components, but requires additional capacity to foster new social-ecological regimes including increased risk tolerance, significant systemic investment, and restructured economies and power relations. Transformative governance has the potential to actively respond to regime shifts triggered by climate change, and thus future research should focus on identifying system drivers and leading indicators associated with social-ecological thresholds.

6.
PLoS One ; 10(12): e0146053, 2015.
Article in English | MEDLINE | ID: mdl-26716453

ABSTRACT

The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.


Subject(s)
Adaptation, Physiological , Models, Theoretical , Phytoplankton/growth & development , Biomass , Eutrophication , Population Dynamics , Seasons
7.
J Environ Manage ; 92(5): 1379-84, 2011 May.
Article in English | MEDLINE | ID: mdl-21112687

ABSTRACT

The conceptual underpinnings for adaptive management are simple; there will always be inherent uncertainty and unpredictability in the dynamics and behavior of complex ecological systems as a result non-linear interactions among components and emergence, yet management decisions must still be made. The strength of adaptive management is in the recognition and confrontation of such uncertainty. Rather than ignore uncertainty, or use it to preclude management actions, adaptive management can foster resilience and flexibility to cope with an uncertain future, and develop safe to fail management approaches that acknowledge inevitable changes and surprises. Since its initial introduction, adaptive management has been hailed as a solution to endless trial and error approaches to complex natural resource management challenges. However, its implementation has failed more often than not. It does not produce easy answers, and it is appropriate in only a subset of natural resource management problems. Clearly adaptive management has great potential when applied appropriately. Just as clearly adaptive management has seemingly failed to live up to its high expectations. Why? We outline nine pathologies and challenges that can lead to failure in adaptive management programs. We focus on general sources of failures in adaptive management, so that others can avoid these pitfalls in the future. Adaptive management can be a powerful and beneficial tool when applied correctly to appropriate management problems; the challenge is to keep the concept of adaptive management from being hijacked for inappropriate use.


Subject(s)
Conservation of Natural Resources/methods , Decision Making , Ecosystem , Environment , Uncertainty
8.
Proc Natl Acad Sci U S A ; 107(39): 16794-9, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20837530

ABSTRACT

Marine ecosystems are in decline. New transformational changes in governance are urgently required to cope with overfishing, pollution, global changes, and other drivers of degradation. Here we explore social, political, and ecological aspects of a transformation in governance of Chile's coastal marine resources, from 1980 to today. Critical elements in the initial preparatory phase of the transformation were (i) recognition of the depletion of resource stocks, (ii) scientific knowledge on the ecology and resilience of targeted species and their role in ecosystem dynamics, and (iii) demonstration-scale experimental trials, building on smaller-scale scientific experiments, which identified new management pathways. The trials improved cooperation among scientists and fishers, integrating knowledge and establishing trust. Political turbulence and resource stock collapse provided a window of opportunity that triggered the transformation, supported by new enabling legislation. Essential elements to navigate this transformation were the ability to network knowledge from the local level to influence the decision-making processes at the national level, and a preexisting social network of fishers that provided political leverage through a national confederation of artisanal fishing collectives. The resultant governance scheme includes a revolutionary national system of marine tenure that allocates user rights and responsibilities to fisher collectives. Although fine tuning is necessary to build resilience of this new regime, this transformation has improved the sustainability of the interconnected social-ecological system. Our analysis of how this transformation unfolded provides insights into how the Chilean system could be further developed and identifies generalized pathways for improved governance of marine resources around the world.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Fisheries , Seawater , Animals , Chile , Fishes , Public Policy
9.
Ambio ; 36(7): 586-92, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18074897

ABSTRACT

Conventional perceptions of the interactions between people and their environment are rapidly transforming. Old paradigms that view humans as separate from nature, natural resources as inexhaustible or endlessly substitutable, and the world as stable, predictable, and in balance are no longer tenable. New conceptual frameworks are rapidly emerging based on an adaptive approach that focuses on learning and flexible management in a dynamic social-ecological landscape. Using two iconic World Heritage Areas as case studies (the Great Barrier Reef and the Grand Canyon) we outline how an improved integration of the scientific and social aspects of natural resource management can guide the evolution of multiscale systems of governance that confront and cope with uncertainty, risk, and change in an increasingly human-dominated world.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Arizona , Australia , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...