Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rom J Morphol Embryol ; 65(2): 195-201, 2024.
Article in English | MEDLINE | ID: mdl-39020533

ABSTRACT

Breast cancer is one of the more frequently diagnosed cancers leading to death in women, and, like other tumor types, it is heterogeneous in its immunophenotype. It harbors mutations that modify tumor aggressiveness, therapy responses, residual disease, drug resistance, and relapse rates in advanced stages. This study aims to assess the mutational status of G2 and G3 tumors using next-generation sequencing (NGS) on initial tissue biopsies, liquid biopsies, and mastectomy specimens. The histopathological (HP) diagnosis for the 32 selected cases was established via Hematoxylin-Eosin (HE) staining by two observers. For the immunohistochemical (IHC) testing of estrogen receptor (ER), progesterone receptor (PGR) and human epidermal growth factor receptor 2 (HER2), we used the Ventana BenchMark Ultra. Ki67 testing was conducted using Bond-III from Leica. For cases with a score of 2+, gene amplification was assessed by silver-enhanced in situ hybridization (ISH) (SISH; Inform HER2 Dual ISH) on Ventana BenchMark Ultra. NGS analysis was initially performed on biopsies and plasma, and later on mastectomy specimens. After automated deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) extraction, concentrations were measured using the Invitrogen Qubit system. Libraries were created using Oncomine systems, and sequencing and analysis were done with the Ion Torrent system. Most tumors were graded as G3 (19 cases), with Luminal A being the predominant molecular subtype, and a significant number displayed HER2∕HER2-low characteristics (24 out of 32 cases). The NGS assessment showed that phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations were the most frequent across all sample types. A significant limitation was the high number of invalid plasma tests due to pre-analytical handling errors or transport issues. Nonetheless, plasma testing (liquid biopsy) proved useful for monitoring tumor evolution and assessing residual disease.


Subject(s)
Breast Neoplasms , High-Throughput Nucleotide Sequencing , Mastectomy , Mutation , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/surgery , Liquid Biopsy/methods , High-Throughput Nucleotide Sequencing/methods , Middle Aged , Adult , Aged
2.
Animals (Basel) ; 11(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406693

ABSTRACT

Acipenser stellatus is a critically endangered species due to the anthropic influence. It has been intensively captured for decades because of its high economic value, its roe being used in the caviar industry. Therefore, Acipenser stellatus is intensively raised in fish farms for both conservation and economical purposes. Aquaculture aims to optimize the feeding regime of juveniles in order to improve its profitability. The purpose of this study was to investigate if Acipenser stellatus can adapt to a starvation/refeeding regime by assessing the effects of this regime on oxidative stress biomarkers and antioxidant defense mechanisms in juveniles raised under aquaculture conditions. The juveniles were subjected to two regimes: a 7-day starvation period followed by 21 days of refeeding, respectively a 14-day starvation period followed by 21 days of refeeding. The results showed that both starvation/refeeding regimes induced an enhancement of antioxidant enzymes activities in the intestine of the juveniles. The oxidative damage was counteracted at the protein level. However, lipid peroxidation was significantly induced in the intestine of the juveniles subjected to 14/21-day starvation/refeeding regime. The 7/21-day starvation/refeeding regime proved to be more suitable for Acipenser stellatus and therefore, it could be useful to optimize the feeding practice in aquaculture production.

3.
Acta Biochim Pol ; 66(1): 47-59, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30852584

ABSTRACT

Acipenser stellatus represents a species of great economical interest due to its roe used for caviar production. Therefore, it has been intensively captured for decades and nowadays, this species is on the verge of extinction. As a consequence, Acipenser stellatus is intensively raised in fish farms. Aquaculture is focused on optimizing the feeding regime of juveniles. The aim of this study was to investigate if Acipenser stellatus can adapt to a starvation/refeeding regime by assessing the effects of this regime on growth performance, oxidative stress biomarkers and heat shock protein (hsp) gene expression in juveniles raised under aquaculture conditions. The juveniles were subjected to two starvation/refeeding regimes: a 7-day starvation period followed by 21 days of refeeding, and a14-day starvation period followed by 21 days of refeeding. The results had shown that the juveniles subjected to 7/21-day starvation/refeeding regime presented a complete compensatory growth, they were able to counteract the oxidative stress by enhancing activities of the antioxidant enzymes and they presented no significant changes in hsp gene expression. In contrast, 14/21-day starvation/refeeding regime negatively influenced growth performance, it induced a high level of oxidative stress that was impossible to counteract and it determined major changes in the hsp gene expression level in the liver of Acipenser stellatus. Thus, Acipenser stellatus seems to be able to adapt only to the 7/21-day starvation/refeeding regime that does not threaten the growth performance and the welfare of juveniles. Therefore, it could be useful to optimize the feeding practice in aquaculture production.


Subject(s)
Antioxidants/metabolism , Oxidative Stress/physiology , Starvation/metabolism , Starvation/physiopathology , Animals , Aquaculture , Catalase/metabolism , Fishes , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Real-Time Polymerase Chain Reaction , Superoxide Dismutase/metabolism
4.
Int J Genomics ; 2018: 7835637, 2018.
Article in English | MEDLINE | ID: mdl-29785396

ABSTRACT

Nowadays, in sturgeon's aquaculture, there is a necessity for sex identification at early stages in order to increase the efficiency of this commercial activity. The basis for a correct identification is studying the different factors that influence the gonad development. The research has been directed towards molecular methods that have been employed with various degrees of success in identifying genes with different expression patterns between male and female sturgeons during their development stages. For the purpose of understanding the sexual development of 4-year-old stellate sturgeon (Acipenser stellatus) individuals, we have selected six genes (foxl2, cyp17a1, ar, dmrt1, sox9, and star). We analysed the gene expression of the selected genes for gonads, anal fin, liver, body kidney, and white muscle. The cyp17a1, ar, dmrt1, and sox9 genes have a significant higher expression in male gonads than in female gonads, while the data shows no significant differences in the expression of the investigated genes in the other organs. We investigate these genes to shed light on aquaculture sturgeon sexual development.

SELECTION OF CITATIONS
SEARCH DETAIL
...