Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Anim Sci ; 100(7)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35772768

ABSTRACT

Cows acutely heat stressed after a pharmacologically induced luteinizing hormone (LH) surge had periovulatory changes in the follicular fluid proteome that may potentiate ovulation and impact oocyte developmental competence. Because the cellular origins of differentially abundant proteins were not known, we have examined the cumulus and granulosa cell transcriptomes from the periovulatory follicle in cows exhibiting varying levels of hyperthermia when occurring after the LH surge. After pharmacological induction of a dominant follicle, lactating dairy cows were administered gonadotropin releasing hormone (GnRH) and maintained in thermoneutral conditions (~67 temperature-humidity index [THI]) or heat stress conditions where THI was steadily increased for ~12 h (71 to 86 THI) and was sufficient to steadily elevate rectal temperatures. Cumulus-oocyte complexes and mural granulosa cells were recovered by transvaginal aspiration of dominant follicle content ~16 h after GnRH. Rectal temperature was used as a continuous, independent variable to identify differentially expressed genes (DEGs) increased or decreased per each 1 °C change in temperature. Cumulus (n = 9 samples) and granulosa (n = 8 samples) cells differentially expressed (false discovery rate [FDR] < 0.05) 25 and 87 genes, respectively. The majority of DEGs were upregulated by hyperthermia. Steady increases in THI are more like the "turning of a dial" than the "flipping of a switch." The moderate but impactful increases in rectal temperature induced modest fold changes in gene expression (<2-fold per 1 °C change in rectal temperature). Identification of cumulus DEGs involved in cell junctions, plasma membrane rafts, and cell-cycle regulation are consistent with marked changes in the interconnectedness and function of cumulus after the LH surge. Depending on the extent to which impacts may be occurring at the junctional level, cumulus changes may have indirect but impactful consequences on the oocyte as it undergoes meiotic maturation. Two granulosa cell DEGs have been reported by others to promote ovulation. Based on what is known, several other DEGs are suggestive of impacts on collagen formation or angiogenesis. Collectively these and other findings provide important insight regarding the extent to which the transcriptomes of the components of the periovulatory follicle (cumulus and mural granulosa cells) are affected by varying degrees of hyperthermia.


Approximately 70% of the world's cattle population reside under ambient conditions experiencing some level of heat stress. Heat-stressed cows chronically exposed to elevated ambient temperatures have difficulty getting pregnant. Although the underlying basis for poor fertility during bouts of chronic heat stress remains unclear and is likely because of many different factors, when ambient conditions are sufficient to increase cow body temperature, different ovulatory follicle components are affected (i.e., mural granulosa cells that line the ovulatory follicle, the intrafollicular fluid and or the cumulus-oocyte complex while it matures in preparation for fertilization while resident within). To test this hypothesis, we have examined the cumulus and granulosa cell transcriptomes from the periovulatory follicle in cows. Using steady increases in THI to induce varying levels of elevated body temperature after the luteinizing hormone surge we discovered certain genes in the cumulus cells that may have indirect but impactful consequences on the oocyte as it undergoes meiotic maturation. We also noted changes in gene expression in granulosa cells that may impact ovulation and corpus luteum formation.


Subject(s)
Lactation , Transcriptome , Animals , Body Temperature , Cattle , Female , Gonadotropin-Releasing Hormone/pharmacology , Granulosa Cells/metabolism , Luteinizing Hormone/metabolism , Ovulation
2.
Oncotarget ; 10(16): 1554-1571, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30899425

ABSTRACT

Super-enhancers (SEs) are unique areas of the genome which drive high-level of transcription and play a pivotal role in the cell physiology. Previous studies have established several important genes in cancer as SE-driven oncogenes. It is likely that oncogenes may hack the resident tissue regenerative program and interfere with SE-driven repair networks, leading to the specific pancreatic ductal adenocarcinoma (PDAC) phenotype. Here, we used ChIP-Seq to identify the presence of SE in PDAC cell lines. Differential H3K27AC marks were identified at enhancer regions of genes including c-MYC, MED1, OCT-4, NANOG, and SOX2 that can act as SE in non-cancerous, cancerous and metastatic PDAC cell lines. GZ17-6.02 affects acetylation of the genes, reduces transcription of major transcription factors, sonic hedgehog pathway proteins, and stem cell markers. In accordance with the decrease in Oct-4 expression, ChIP-Seq revealed a significant decrease in the occupancy of OCT-4 in the entire genome after GZ17-6.02 treatment suggesting the possible inhibitory effect of GZ17-6.02 on PDAC. Hence, SE genes are associated with PDAC and targeting their regulation with GZ17-6.02 offers a novel approach for treatment.

3.
Mol Cancer Ther ; 18(4): 788-800, 2019 04.
Article in English | MEDLINE | ID: mdl-30787177

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) develops extrinsic- and intrinsic-resistant phenotypes to prevent chemotherapies from entering into the cells by promoting desmoplastic reactions (DR) and metabolic malfunctions of the drugs. It is well established that these responses are also associated with pancreatic cancer cells' gemcitabine resistance. However, the mechanism by which these resistant pathways function in the pancreatic cancer cells remains poorly understood. In these studies, we show that CYR61/CCN1 signaling plays a vital role in making pancreatic cancer cells resistant to gemcitabine in vitro and also in a tumor xenograft model. We proved that the catastrophic effect of gemcitabine could significantly be increased in gemcitabine-resistant PDAC cells when CYR61/CCN1 is depleted, while this effect can be suppressed in gemcitabine-sensitive neoplastic cells by treating them with CYR61/CCN1 recombinant protein. Ironically, nontransformed pancreatic cells, which are sensitive to gemcitabine, cannot be resistant to gemcitabine by CYR61/CCN1 protein treatment, showing a unique feature of CYR61/CCN signaling that only influences PDAC cells to become resistant. Furthermore, we demonstrated that CYR61/CCN1 suppresses the expression of the gemcitabine-activating enzyme deoxycytidine kinase (dCK) while it induces the expression of a DR-promoting factor CTGF (connective tissue growth factor) in pancreatic cancer cells in vitro and in vivo Thus, the previously described mechanisms (dCK and CTGF pathways) for gemcitabine resistance may be two novel targets for CYR61/CCN1 to protect pancreatic cancer cells from gemcitabine. Collectively, these studies reveal a novel paradigm in which CYR61/CCN1regulates both extrinsic and intrinsic gemcitabine resistance in PDAC cells by employing unique signaling pathways.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Connective Tissue Growth Factor/metabolism , Cysteine-Rich Protein 61/metabolism , Deoxycytidine Kinase/metabolism , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm/genetics , Pancreatic Neoplasms/metabolism , Phenotype , Animals , Apoptosis/drug effects , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cysteine-Rich Protein 61/genetics , Deoxycytidine/administration & dosage , Deoxycytidine/pharmacology , Female , Gene Knockout Techniques , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Pancreatic Neoplasms/pathology , Signal Transduction/drug effects , Transfection , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , Gemcitabine
4.
Proc Natl Acad Sci U S A ; 114(33): E6952-E6961, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28760966

ABSTRACT

Children with Rett syndrome show abnormal cutaneous sensitivity. The precise nature of sensory abnormalities and underlying molecular mechanisms remain largely unknown. Rats with methyl-CpG binding protein 2 (MeCP2) mutation, characteristic of Rett syndrome, show hypersensitivity to pressure and cold, but hyposensitivity to heat. They also show cutaneous hyperinnervation by nonpeptidergic sensory axons, which include subpopulations encoding noxious mechanical and cold stimuli, whereas peptidergic thermosensory innervation is reduced. MeCP2 knockdown confined to dorsal root ganglion sensory neurons replicated this phenotype in vivo, and cultured MeCP2-deficient ganglion neurons showed augmented axonogenesis. Transcriptome analysis revealed dysregulation of genes associated with cytoskeletal dynamics, particularly those controlling actin polymerization and focal-adhesion formation necessary for axon growth and mechanosensory transduction. Down-regulation of these genes by topoisomerase inhibition prevented abnormal axon sprouting. We identified eight key affected genes controlling actin signaling and adhesion formation, including members of the Arhgap, Tiam, and cadherin families. Simultaneous virally mediated knockdown of these genes in Rett rats prevented sensory hyperinnervation and reversed mechanical hypersensitivity, indicating a causal role in abnormal outgrowth and sensitivity. Thus, MeCP2 regulates ganglion neuronal genes controlling cytoskeletal dynamics, which in turn determines axon outgrowth and mechanosensory function and may contribute to altered pain sensitivity in Rett syndrome.


Subject(s)
Cytoskeletal Proteins/biosynthesis , Cytoskeleton/metabolism , Down-Regulation , Ganglion Cysts/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Mutation , Rett Syndrome/metabolism , Animals , Axons/metabolism , Axons/pathology , Cytoskeletal Proteins/genetics , Cytoskeleton/genetics , Ganglion Cysts/pathology , Humans , Methyl-CpG-Binding Protein 2/genetics , Rats , Rats, Mutant Strains , Rett Syndrome/genetics , Rett Syndrome/pathology
5.
PLoS One ; 10(10): e0141220, 2015.
Article in English | MEDLINE | ID: mdl-26496202

ABSTRACT

During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome.


Subject(s)
Aging/genetics , Gene Expression Regulation, Developmental , Liver/metabolism , RNA, Messenger/genetics , Transcriptome , Aging/metabolism , Animals , Animals, Newborn , Embryo, Mammalian , Fetus , Gene Expression Profiling , Liver/growth & development , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Annotation , Morphogenesis/genetics , RNA Splicing , RNA, Messenger/metabolism , Sequence Analysis, RNA
6.
Adv Genomics Genet ; 2015(5): 53-75, 2015.
Article in English | MEDLINE | ID: mdl-25705109

ABSTRACT

Obesity is accompanied by hyperphagia in several classical genetic obesity-related syndromes that are rare, including Prader-Willi syndrome (PWS) and Alström syndrome (ALMS). We compared coding and noncoding gene expression in adult males with PWS, ALMS, and nonsyndromic obesity relative to nonobese males using readily available lymphoblastoid cells to identify disease-specific molecular patterns and disturbed mechanisms in obesity. We found 231 genes upregulated in ALMS compared with nonobese males, but no genes were found to be upregulated in obese or PWS males and 124 genes were downregulated in ALMS. The metallothionein gene (MT1X) was significantly downregulated in ALMS, in common with obese males. Only the complex SNRPN locus was disturbed (downregulated) in PWS along with several downregulated small nucleolar RNAs (snoRNAs) in the 15q11-q13 region (SNORD116, SNORD109B, SNORD109A, SNORD107). Eleven upregulated and ten downregulated snoRNAs targeting multiple genes impacting rRNA processing, developmental pathways, and associated diseases were found in ALMS. Fifty-two miRNAs associated with multiple, overlapping gene expression disturbances were upregulated in ALMS, and four were shared with obese males but not PWS males. For example, seven passenger strand microRNAs (miRNAs) (miR-93*, miR-373*, miR-29b-2*, miR-30c-1*, miR27a*, miR27b*, and miR-149*) were disturbed in association with six separate downregulated target genes (CD68, FAM102A, MXI1, MYO1D, TP53INP1, and ZRANB1). Cell cycle (eg, PPP3CA), transcription (eg, POLE2), and development may be impacted by upregulated genes in ALMS, while downregulated genes were found to be involved with metabolic processes (eg, FABP3), immune responses (eg, IL32), and cell signaling (eg, IL1B). The high number of gene and noncoding RNA disturbances in ALMS contrast with observations in PWS and males with nonsyndromic obesity and may reflect the progressing multiorgan pathology of the ALMS disease process.

7.
Reprod Toxicol ; 50: 68-86, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25242112

ABSTRACT

Neonatal treatment of hamsters with diethylstilbestrol (DES) induces uterine hyperplasia/dysplasia/neoplasia (endometrial adenocarcinoma) in adult animals. We subsequently determined that the neonatal DES exposure event directly and permanently disrupts the developing hamster uterus (initiation stage) so that it responds abnormally when it is stimulated with estrogen in adulthood (promotion stage). To identify candidate molecular elements involved in progression of the disruption/neoplastic process, we performed: (1) immunoblot analyses and (2) microarray profiling (Affymetrix Gene Chip System) on sets of uterine protein and RNA extracts, respectively, and (3) immunohistochemical analysis on uterine sections; all from both initiation stage and promotion stage groups of animals. Here we report that: (1) progression of the neonatal DES-induced hyperplasia/dysplasia/neoplasia phenomenon in the hamster uterus involves a wide spectrum of specific gene expression alterations and (2) the gene products involved and their manner of altered expression differ dramatically during the initiation vs. promotion stages of the phenomenon.


Subject(s)
Diethylstilbestrol/toxicity , Uterine Neoplasms/chemically induced , Uterus/drug effects , Animals , Animals, Newborn , Cadherins/physiology , Female , Gene Expression Profiling , Guinea Pigs , Hyperplasia , Insulin Receptor Substrate Proteins/analysis , Mesocricetus , Oncogenes , Pregnancy , Proliferating Cell Nuclear Antigen/analysis , Receptors, Androgen/analysis , Uterine Neoplasms/metabolism , Uterus/metabolism , Uterus/pathology
8.
Drug Metab Dispos ; 41(12): 2175-86, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24080161

ABSTRACT

Phase-I drug metabolizing enzymes catalyze reactions of hydrolysis, reduction, and oxidation of drugs and play a critical role in drug metabolism. However, the functions of most phase-I enzymes are not mature at birth, which markedly affects drug metabolism in newborns. Therefore, characterization of the expression profiles of phase-I enzymes and the underlying regulatory mechanisms during liver maturation is needed for better estimation of using drugs in pediatric patients. The mouse is an animal model widely used for studying the mechanisms in the regulation of developmental expression of phase-I genes. Therefore, we applied RNA sequencing to provide a "true quantification" of the mRNA expression of phase-I genes in the mouse liver during development. Liver samples of male C57BL/6 mice at 12 different ages from prenatal to adulthood were used for defining the ontogenic mRNA profiles of phase-I families, including hydrolysis: carboxylesterase (Ces), paraoxonase (Pon), and epoxide hydrolase (Ephx); reduction: aldo-keto reductase (Akr), quinone oxidoreductase (Nqo), and dihydropyrimidine dehydrogenase (Dpyd); and oxidation: alcohol dehydrogenase (Adh), aldehyde dehydrogenase (Aldh), flavin monooxygenases (Fmo), molybdenum hydroxylase (Aox and Xdh), cytochrome P450 (P450), and cytochrome P450 oxidoreductase (Por). Two rapidly increasing stages of total phase-I gene expression after birth reflect functional transition of the liver during development. Diverse expression patterns were identified, and some large gene families contained the mRNA of genes that are enriched at different stages of development. Our study reveals the mRNA abundance of phase-I genes in the mouse liver during development and provides a valuable foundation for mechanistic studies in the future.


Subject(s)
Liver/enzymology , Metabolic Detoxication, Phase I/genetics , RNA, Messenger/genetics , Animals , Gene Expression/genetics , Hydrolysis , Male , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA/methods
9.
Drug Metab Dispos ; 40(6): 1198-209, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22434873

ABSTRACT

Cytochromes P450 (P450s) are a superfamily of enzymes that have critical functions in liver to catalyze the biotransformation of numerous drugs. However, the functions of most P450s are not mature at birth, which can markedly affect the metabolism of drugs in newborns. Therefore, characterization of the developmental profiles and regulatory mechanisms of P450 expression is needed for more rational drug therapy of pediatric patients. An animal model is indispensable for studying the mechanisms of postnatal development of the P450s. Hence we used RNA sequencing (RNA-Seq) to provide a "true quantification" of mRNA expression of all P450s in mouse liver during development. Liver samples of male C57BL/6 mice at 12 different ages from prenatal to adulthood were used. Total mRNAs of the 103 mouse P450s displayed two rapid increasing stages after birth, reflecting critical functional transition of liver during development. Four ontogenic expression patterns were identified among the 71 significantly expressed P450s, which categorized genes into neonatal-, adolescent-, adolescent/adult-, and adult-enriched groups. The 10 most highly expressed subfamilies of mouse P450s in livers of adult mice were CYP2E, -2C, -2D, -3A, -4A, -2F, -2A, -1A, -4F, and -2B, which showed diverse expression profiles during development. The expression patterns of multiple members within a P450 subfamily were often classified to different groups. RNA-Seq also enabled the quantification of known transcript variants of CYP2C44, CYP2C50, CYP2D22, CYP3A25, and CYP26B1 and identification of novel transcripts for CYP2B10, CYP2D26, and CYP3A13. In conclusion, this study reveals the mRNA abundance of all the P450s in mouse liver during development and provides a foundation for mechanistic studies in the future.


Subject(s)
Alternative Splicing/genetics , Cytochrome P-450 Enzyme System/biosynthesis , Liver/growth & development , RNA, Messenger/biosynthesis , Sequence Analysis, RNA/methods , Transcription, Genetic/physiology , Animals , Animals, Newborn , Base Sequence , Cytochrome P-450 Enzyme System/genetics , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Liver/embryology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Pregnancy , RNA Splicing/genetics , RNA, Messenger/genetics
10.
Toxicol Sci ; 127(2): 592-608, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22454430

ABSTRACT

During development, the maturation of liver transporters is essential for chemical elimination in newborns and children. One cannot compare the real abundance of transcripts by conventional messenger RNA (mRNA) profiling methods; in comparison, RNA-Seq provides a "true quantification" of transcript counts and an unbiased detection of novel transcripts. The purpose of this study was to compare the mRNA abundance of liver transporters and seek their novel transcripts during liver development. Livers from male C57BL/6J mice were collected at 12 ages from prenatal to adulthood. The transcriptome was determined by RNA-Seq, with transcript abundance estimated by Cufflinks. Among 498 known transporters, the ontogeny of 62 known critical xenobiotic transporters was examined in detail. The cumulative mRNAs of the uptake transporters increased more than the efflux transporters in livers after birth. A heatmap revealed three ontogenic patterns of these transporters, namely perinatal (reaching maximal expression before birth), adolescent (about 20 days), and adult enriched (about 60 days of age). Before birth, equilibrative nucleoside transporter 1 was the transporter with highest expression in liver (29%), followed by breast cancer resistance protein (Bcrp) (26%). Within 1 day after birth, the mRNAs of these two transporters decreased markedly, and Ntcp became the transporter with highest expression (52%). In adult liver, the transporters with highest expression were organic cation transporter 1 and Ntcp (23% and 22%, respectively). Three isoforms of Bcrp with alternate leading exons were identified (E1a, E1b, and E1c), with E1b being the major isoform. In conclusion, this study reveals the mRNA abundance of transporters in liver and demonstrates that the expression of liver transporters is both age and isoform specific.


Subject(s)
Gene Expression Profiling/methods , Liver/metabolism , Membrane Transport Proteins/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Age Factors , Animals , Base Sequence , Cluster Analysis , Gene Expression Regulation, Developmental , Gestational Age , Liver/embryology , Liver/growth & development , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Morphogenesis , Protein Isoforms , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Systems Biology
11.
Nucleic Acids Res ; 38(22): 7943-63, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20693526

ABSTRACT

The pregnane X receptor (PXR) is a key regulator of xenobiotic metabolism and disposition in liver. However, little is known about the PXR DNA-binding signatures in vivo, or how PXR regulates novel direct targets on a genome-wide scale. Therefore, we generated a roadmap of hepatic PXR bindings in the entire mouse genome [chromatin immunoprecipitation (ChIP)-Seq]. The most frequent PXR DNA-binding motif is the AGTTCA-like direct repeat with a 4 bp spacer [direct repeat (DR)-4)]. Surprisingly, there are also high motif occurrences with spacers of a periodicity of 5 bp, forming a novel DR-(5 n+4) pattern for PXR binding. PXR-binding overlaps with the epigenetic mark for gene activation (histone-H3K4-di-methylation), but not with epigenetic marks for gene suppression (DNA methylation or histone-H3K27-tri-methylation) (ChIP-on-chip). After administering a PXR agonist, changes in mRNA of most PXR-direct target genes correlate with increased PXR binding. Specifically, increased PXR binding triggers the trans-activation of critical drug-metabolizing enzymes and transporters. The mRNA induction of these genes is absent in PXR-null mice. The current work provides the first in vivo evidence of PXR DNA-binding signatures in the mouse genome, paving the path for predicting and further understanding the multifaceted roles of PXR in liver.


Subject(s)
Liver/metabolism , Receptors, Steroid/metabolism , Response Elements , Animals , Binding Sites , Chromatin Immunoprecipitation , DNA/chemistry , DNA/metabolism , Enzyme-Linked Immunosorbent Assay , Epigenesis, Genetic , Gene Expression Profiling , Genome , Inactivation, Metabolic/genetics , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Pregnane X Receptor , RNA, Messenger/biosynthesis , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...