Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383396

ABSTRACT

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Subject(s)
Fatty Acids, Omega-3 , Islets of Langerhans , N-Glycosyl Hydrolases , Mice , Animals , Humans , Islets of Langerhans/metabolism , Cell Death , Cytokines/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated , Phosphatidylcholines/metabolism
2.
Genes Dev ; 37(11-12): 490-504, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37364986

ABSTRACT

The consolidation of unambiguous cell fate commitment relies on the ability of transcription factors (TFs) to exert tissue-specific regulation of complex genetic networks. However, the mechanisms by which TFs establish such precise control over gene expression have remained elusive-especially in instances in which a single TF operates in two or more discrete cellular systems. In this study, we demonstrate that ß cell-specific functions of NKX2.2 are driven by the highly conserved NK2-specific domain (SD). Mutation of the endogenous NKX2.2 SD prevents the developmental progression of ß cell precursors into mature, insulin-expressing ß cells, resulting in overt neonatal diabetes. Within the adult ß cell, the SD stimulates ß cell performance through the activation and repression of a subset of NKX2.2-regulated transcripts critical for ß cell function. These irregularities in ß cell gene expression may be mediated via SD-contingent interactions with components of chromatin remodelers and the nuclear pore complex. However, in stark contrast to these pancreatic phenotypes, the SD is entirely dispensable for the development of NKX2.2-dependent cell types within the CNS. Together, these results reveal a previously undetermined mechanism through which NKX2.2 directs disparate transcriptional programs in the pancreas versus neuroepithelium.


Subject(s)
Homeodomain Proteins , Insulin-Secreting Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeobox Protein Nkx-2.2 , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation , Zebrafish Proteins/genetics
3.
Curr Opin Physiol ; 14: 13-20, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32864533

ABSTRACT

Diabetes is a major worldwide health problem which results from the loss and/or dysfunction of pancreatic insulin-producing ß cells in the pancreas. Therefore, there is great interest in understanding the endogenous capacity of ß cells to regenerate under normal or pathological conditions, with the goal of restoring functional ß cell mass in patients with diabetes. Here, we summarize the current status of ß cell regeneration research, which has been broadly divided into three in vivo mechanisms: 1. proliferation of existing ß cells; 2. neogenesis of ß cells from adult ductal progenitors; and 3. transdifferentiation of other cell types into ß cells. We discuss the evidence and controversies for each mechanism in mice and humans, as well as the prospect of using these approaches for the treatment of diabetes.

4.
Cell Metab ; 30(6): 1091-1106.e8, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31607563

ABSTRACT

Many studies have highlighted the role of dysregulated glucagon secretion in the etiology of hyperglycemia and diabetes. Accordingly, understanding the mechanisms underlying pancreatic islet α cell development and function has important implications for the discovery of new therapies for diabetes. In this study, comparative transcriptome analyses between embryonic mouse pancreas and adult mouse islets identified several pancreatic lncRNAs that lie in close proximity to essential pancreatic transcription factors, including the Pax6-associated lncRNA Paupar. We demonstrate that Paupar is enriched in glucagon-producing α cells where it promotes the alternative splicing of Pax6 to an isoform required for activation of essential α cell genes. Consistently, deletion of Paupar in mice resulted in dysregulation of PAX6 α cell target genes and corresponding α cell dysfunction, including blunted glucagon secretion. These findings illustrate a distinct mechanism by which a pancreatic lncRNA can coordinate glucose homeostasis by cell-specific regulation of a broadly expressed transcription factor.


Subject(s)
Diabetes Mellitus/metabolism , Glucagon-Secreting Cells/metabolism , PAX6 Transcription Factor/metabolism , RNA, Long Noncoding/metabolism , Animals , Cells, Cultured , Embryo, Mammalian , Gene Expression Profiling , Glucagon/metabolism , Glucose/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout
5.
Nat Commun ; 6: 10077, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26687066

ABSTRACT

TP53 is mutated in 50% of all cancers, and its function is often compromised in cancers where it is not mutated. Here we demonstrate that the pro-tumorigenic/metastatic Six1 homeoprotein decreases p53 levels through a mechanism that does not involve the negative regulator of p53, MDM2. Instead, Six1 regulates p53 via a dual mechanism involving upregulation of microRNA-27a and downregulation of ribosomal protein L26 (RPL26). Mutation analysis confirms that RPL26 inhibits miR-27a binding and prevents microRNA-mediated downregulation of p53. The clinical relevance of this interaction is underscored by the finding that Six1 expression strongly correlates with decreased RPL26 across numerous tumour types. Importantly, we find that Six1 expression leads to marked resistance to therapies targeting the p53-MDM2 interaction. Thus, we identify a competitive mechanism of p53 regulation, which may have consequences for drugs aimed at reinstating p53 function in tumours.


Subject(s)
Down-Regulation , Homeodomain Proteins/metabolism , MicroRNAs/genetics , Neoplasms/genetics , Ribosomal Proteins/genetics , Tumor Suppressor Protein p53/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Humans , MicroRNAs/metabolism , Neoplasms/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Ribosomal Proteins/metabolism , Tumor Suppressor Protein p53/metabolism
6.
Proc Natl Acad Sci U S A ; 108(37): 15242-7, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-21876171

ABSTRACT

Type 1 and type 2 diabetes result from an absolute or relative reduction in functional ß-cell mass. One approach to replacing lost ß-cell mass is transplantation of cadaveric islets; however, this approach is limited by lack of adequate donor tissue. Therefore, there is much interest in identifying factors that enhance ß-cell differentiation and proliferation in vivo or in vitro. Connective tissue growth factor (CTGF) is a secreted molecule expressed in endothelial cells, pancreatic ducts, and embryonic ß cells that we previously showed is required for ß-cell proliferation, differentiation, and islet morphogenesis during development. The current study investigated the tissue interactions by which CTGF promotes normal pancreatic islet development. We found that loss of CTGF from either endothelial cells or ß cells results in decreased embryonic ß-cell proliferation, making CTGF unique as an identified ß cell-derived factor that regulates embryonic ß-cell proliferation. Endothelial CTGF inactivation was associated with decreased islet vascularity, highlighting the proposed role of endothelial cells in ß-cell proliferation. Furthermore, CTGF overexpression in ß cells during embryogenesis using an inducible transgenic system increased islet mass at birth by promoting proliferation of immature ß cells, in the absence of changes in islet vascularity. Together, these findings demonstrate that CTGF acts in an autocrine manner during pancreas development and suggest that CTGF has the potential to enhance expansion of immature ß cells in directed differentiation or regeneration protocols.


Subject(s)
Connective Tissue Growth Factor/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Animals , Autocrine Communication , Cell Lineage , Cell Proliferation , Cell Size , Embryonic Development , Mice , Models, Biological , Morphogenesis , Rats
7.
Endocrinology ; 151(9): 4146-57, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20668028

ABSTRACT

Old astrocyte specifically induced substance (OASIS) has previously been shown to be a putative endoplasmic reticulum (ER) stress sensor in astrocytes with a mechanism of activation that is similar to ATF6. In this study we investigated the expression and activation of endogenous and overexpressed OASIS in pancreatic beta-cells. OASIS mRNA expression was detected in pancreatic beta-cell lines and rodent islets, and the expression level was up-regulated by ER stress-inducing compounds. Endogenous OASIS protein, however, is expressed at low levels in pancreatic beta-cell lines and rodent islets, possibly due to abundant levels of the micro-RNA miR-140 present in these cells. In contrast, expression of both full-length and cleaved (active) OASIS was readily detectable in the developing mouse pancreas (embryonic d 15.5). Microarray analysis after expression of an active nuclear-localized version of OASIS in an inducible INS-1 beta-cell line resulted in the up-regulation of many genes implicated in extracellular matrix production and protein transport but not classical ER stress response genes. Consistent with this, expression of active OASIS failed to induce glucose-regulated protein 78 kDa promoter activity in pancreatic beta-cells. These results suggest that the repertoire of genes induced by OASIS is cell type-dependent and that the OASIS protein may have a role in pancreas development.


Subject(s)
Cyclic AMP Response Element-Binding Protein/genetics , Extracellular Matrix/metabolism , Gene Expression Profiling , Insulin-Secreting Cells/metabolism , Alternative Splicing , Animals , Blotting, Western , Cell Line, Tumor , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum/metabolism , Insulin-Secreting Cells/cytology , Luciferases/genetics , Luciferases/metabolism , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Microscopy, Fluorescence , Oligonucleotide Array Sequence Analysis , Pancreas/embryology , Pancreas/metabolism , Rats , Rats, Wistar , Regulatory Factor X Transcription Factors , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Birth Defects Res C Embryo Today ; 87(3): 232-48, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19750517

ABSTRACT

Diabetes is characterized by decreased function of insulin-producing beta cells and insufficient insulin output resulting from an absolute (Type 1) or relative (Type 2) inadequate functional beta cell mass. Both forms of the disease would greatly benefit from treatment strategies that could enhance beta cell regeneration and/or function. Successful and reliable methods of generating beta cells or whole islets from progenitor cells in vivo or in vitro could lead to restoration of beta cell mass in individuals with Type 1 diabetes and enhanced beta cell compensation in Type 2 patients. A thorough understanding of the normal developmental processes that occur during pancreatic organogenesis, for example, transcription factors, cell signaling molecules, and cell-cell interactions that regulate endocrine differentiation from the embryonic pancreatic epithelium, is required in order to successfully reach these goals. This review summarizes our current understanding of pancreas development, with particular emphasis on factors intrinsic or extrinsic to the pancreatic epithelium that are involved in regulating the development and differentiation of the various pancreatic cell types. We also discuss the recent progress in generating insulin-producing cells from progenitor sources.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Developmental , Pancreas/cytology , Pancreas/embryology , Signal Transduction , Animals , Cell Lineage , Embryo, Mammalian , Humans , Transcription Factors/metabolism
9.
Mol Endocrinol ; 23(3): 324-36, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19131512

ABSTRACT

The factors necessary for normal pancreatic islet morphogenesis have not been well characterized. Here we report that connective tissue growth factor (CTGF) is involved in the establishment of normal islet endocrine cell ratio and architecture. CTGF is a secreted protein known to modulate several growth factor-signaling pathways including TGF-beta, BMP, and Wnt. Although its role in pancreatic diseases such as pancreatitis and pancreatic cancer are well documented, a role for CTGF in normal pancreas development and function has heretofore not been examined. Using a lacZ-tagged CTGF allele, we describe for the first time the expression pattern of CTGF in the developing pancreas and the requirement of CTGF for normal islet morphogenesis and embryonic beta-cell proliferation. CTGF is highly expressed in pancreatic ductal epithelium and vascular endothelium, as well as at lower levels in developing insulin(+) cells, but becomes down-regulated in beta-cells soon after birth. Pancreata from CTGF null embryos have an increase in glucagon(+) cells with a concomitant decrease in insulin(+) cells, and show defects in islet morphogenesis. Loss of CTGF also results in a dramatic decrease in beta-cell proliferation at late gestation. Unlike CTGF null embryos, CTGF heterozygotes survive past birth and exhibit a range of islet phenotypes, including an intermingling of islet cell types, increased number of glucagon(+) cells, and beta-cell hypertrophy.


Subject(s)
Cell Lineage/genetics , Cell Movement/genetics , Cell Proliferation , Connective Tissue Growth Factor/genetics , Insulin-Secreting Cells/physiology , Islets of Langerhans/embryology , Animals , Cell Size , Cells, Cultured , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/physiology , Embryo, Mammalian , Embryonic Development/genetics , Glucagon/metabolism , Insulin-Secreting Cells/cytology , Islets of Langerhans/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...