Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(5): 3473-3479, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38260000

ABSTRACT

In this work, we used a one-step hydrothermal method to synthesize blue-emission sulfur-doped carbon dots (S-CDs) using jaggery as a carbon precursor. The synthesized carbon quantum dots showed low toxicity, good water solubility, anti-interference properties, and stable fluorescence. When excited at 310 nm, the S-CDs produced bright emission with a quantum yield of 7.15% at 397 nm. The S-CDs exhibited selective and sensitive quenching responses with limits of detection (LODs) of 4.25 µg mL-1 and 3.15 µg mL-1 for variable concentrations of Cr6+ and Fe3+, respectively, accompanied by a consistent linear relationship between fluorescence intensity and these concentrations. Fluorescence lifetime measurements were used to investigate the fluorescence quenching mechanism, which supports the static type of quenching. Outstanding benefits of the developed S-CD based fluorescence probe include its low cost, excellent sensitivity and selectivity, and ease of use for the detection of Cr6+ and Fe3+ ions. The developed carbon dot based fluorescent probe was successfully used to detect Cr6+ and Fe3+ ions in real water samples with an excellent recovery ratio.

2.
Chirality ; 2018 May 21.
Article in English | MEDLINE | ID: mdl-29782664

ABSTRACT

Chiral separation by normal phase high performance liquid chromatography is one of the most powerful technique to quantify the chiral purity of the compounds. In this study, a novel, simple, and specific analytical method was proposed to ascertain the chiral purity of alvimopan (ALV). The normal phase HPLC method was developed based on cellulose tris (3,5-dichlorophenylcarbamate) stationary phase. The separation of ALV isomers achieved by using column CHIRALPAK IC (250 × 4.6 mm, 5 µm), mobile phase n-hexane: isopropyl alcohol: ethanol: diethylamine (650:200:150:5 v/v), column oven temperature 30°C, flow rate 1.0 mL min-1 , injection volume was 10 µL, chromatographic response monitored at 273 nm. The developed method was validated as per the ICH guidelines and found precise, accurate, and linear. The advantage of the method is a good separation of ALV isomers within 35 minutes of the analysis time. Therefore, this method is suitable for routine determination of chiral purity of ALV active pharmaceutical ingredient.

3.
Luminescence ; 32(6): 918-923, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28429837

ABSTRACT

We here for the first time demonstrate an analytical approach for the highly selective and sensitive detection of amoxicillin (Amox) in aqueous medium based on the fluorescence quenching of quantum dots (QDs). The change in fluorescence intensity of mercaptopropionic acid-capped cadmium sulphide (MPA-CdS) QDs is attributed to the increasing concentration of Amox. The results show that the fluorescence quenching of QDs by Amox takes place through both static and dynamic types of quenching mechanism. The fluorescence quenching of QDs with increase in concentration of Amox shows the linear range between 5 µg ml-1 and 30 µg ml-1 and the limit of detection (LOD) is 5.19 µg ml-1 . There is no interference of excipients, which are commonly present in pharmaceutical formulation and urine samples. For the practical application approach, the developed method has been successfully applied for the determination of Amox in pharmaceutical formulations and urine samples with acceptable results.


Subject(s)
Amoxicillin/analysis , Anti-Bacterial Agents/analysis , Luminescent Measurements/methods , Water Pollutants, Chemical/analysis , Cadmium Compounds/chemistry , Fluorescence , Fluorescent Dyes , Humans , Quantum Dots/chemistry , Sulfides/chemistry , Urine/chemistry
4.
J Pharm Anal ; 6(6): 410-416, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29404011

ABSTRACT

A simple and straightforward method for the determination of dolasetron mesylate (DM) in aqueous solution was developed based on the fluorescence quenching of 3-Mercaptopropionic acid (MPA) capped CdS quantum dots (QDs). The structure, morphology, and optical properties of synthesized QDs were characterized by using UV-Vis absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. Under the optimum conditions, the MPA-CdS QDs fluorescence probe offered good sensitivity and selectivity for detecting DM. The probe provided a highly specific selectivity and a linear detection of DM in the range of 2-40 µg/mL with detection limit (LOD) 1.512 µg/mL. The common excipients did not interfere in the proposed method. The fluorescence quenching mechanism of CdS QDs is also discussed. The developed sensor was applied to the quantification of DM in urine and human serum sample with satisfactory results.

5.
J Fluoresc ; 25(4): 1085-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26112231

ABSTRACT

This study reports the interaction and energy transfer between fluorescent carbon quantum dots (CQDs) and D-Penicillamine capped gold nanoparticles (DPA-AuNPs). The CQDs was synthesized by a simple chemical oxidation method at room temperature. The prepared CQDs shows a strong fluorescence at λ em = 430 nm when excited at λ ex = 320 nm. The interaction of CQDs with DPA-AuNPs was characterized by fluorescence spectroscopy, Transmission Electron Microscopy (TEM) study and Dynamic Light Scattering (DLS) techniques. The fluorescence study shows the continuous quenching in the fluorescence intensity of CQDs in presence of increasing concentrations of DPA-AuNPs. The change in fluorescence spectra of CQDs in presence of increasing concentration of DPA-AuNPs and quenching are suggestive of a rapid adsorption of CQDs on the surface of DPA-AuNPs. The K sv , K, K q and n values were calculated and results indicated that the dynamic type of quenching takes place. The distance between donor and acceptor (r) is 6.07 nm which supports the energy transfer by Fluorescence Resonance Energy Transfer (FRET) phenomenon. The plausible mechanism for FRET is also discussed.

6.
ACS Appl Mater Interfaces ; 4(10): 5217-26, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-22948013

ABSTRACT

Quantum dots (QDs) are usually used as fluorescent probe, and they are difficult to use in colorimetric detection. However, in this report carboxyl-functionalized CdS (COF-CdS) QDs were synthesized in aqueous solution for colorimetric detection following a classic method. On the basis of inducing the aggregation of COF-CdS QDs, a simple naked eye colorimetric method with high sensitivity and selectivity was developed for the sensing of Co(2+) ions in aqueous solutions. The Co(2+) ions induced COF-CdS QDs results in a marked enhancement of the UV-vis absorption spectra at 360 nm, and the process was accompanied by a visible color change from colorless to yellowish brown within 5 min, which proves a sensitive detection of Co(2+) ions. The sensing of Co(2+) ions can therefore be easily achieved by a UV-vis spectrophotometer or even by the naked eye. Under the optimized circumstances, this method yields excellent sensitivity (LOD = 0.23 µg mL(-1)) and selectivity toward Co(2+) ions. The calibration plot of (A - A(0)) at 360 nm against concentration of Co(2+) ions was linear over the range from 0.5 to 14 µg mL(-1) with a correlation coefficient of 0.9996. The accuracy and reliability of the method were further ascertained by recovery studies via standard addition method with percent recoveries in the range of 99.63-102.46%. The plausible mechanism for the color change reaction has also been discussed. Our attempt may provide a cost-effective, rapid, and simple solution for the inspection of Co(2+) ions in the presence of a complex matrix from environmental aqueous samples.


Subject(s)
Cobalt/analysis , Colorimetry , Fluorescent Dyes/chemistry , Quantum Dots , Water Pollutants, Chemical/analysis , Cadmium Compounds/chemistry , Hydrogen-Ion Concentration , Ions/chemistry , Spectrophotometry, Ultraviolet , Sulfides/chemistry , Time Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...