Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6918, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903809

ABSTRACT

Cryptochromes (CRYs) are a structurally conserved but functionally diverse family of proteins that can confer unique sensory properties to organisms. In the marine bristle worm Platynereis dumerilii, its light receptive cryptochrome L-CRY (PdLCry) allows the animal to discriminate between sunlight and moonlight, an important requirement for synchronizing its lunar cycle-dependent mass spawning. Using cryo-electron microscopy, we show that in the dark, PdLCry adopts a dimer arrangement observed neither in plant nor insect CRYs. Intense illumination disassembles the dimer into monomers. Structural and functional data suggest a mechanistic coupling between the light-sensing flavin adenine dinucleotide chromophore, the dimer interface, and the C-terminal tail helix, with a likely involvement of the phosphate binding loop. Taken together, our work establishes PdLCry as a CRY protein with inverse photo-oligomerization with respect to plant CRYs, and provides molecular insights into how this protein might help discriminating the different light intensities associated with sunlight and moonlight.


Subject(s)
Cryptochromes , Light , Animals , Cryptochromes/metabolism , Cryoelectron Microscopy
2.
Structure ; 23(4): 628-38, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25728926

ABSTRACT

The visual pigment rhodopsin belongs to the family of G protein-coupled receptors that can form higher oligomers. It is controversial whether rhodopsin forms oligomers and whether oligomers are functionally relevant. Here, we study rhodopsin organization in cryosections of dark-adapted mouse rod photoreceptors by cryoelectron tomography. We identify four hierarchical levels of organization. Rhodopsin forms dimers; at least ten dimers form a row. Rows form pairs (tracks) that are aligned parallel to the disk incisures. Particle-based simulation shows that the combination of tracks with fast precomplex formation, i.e. rapid association and dissociation between inactive rhodopsin and the G protein transducin, leads to kinetic trapping: rhodopsin first activates transducin from its own track, whereas recruitment of transducin from other tracks proceeds more slowly. The trap mechanism could produce uniform single-photon responses independent of rhodopsin lifetime. In general, tracks might provide a platform that coordinates the spatiotemporal interaction of signaling molecules.


Subject(s)
Photoreceptor Cells/ultrastructure , Rhodopsin/chemistry , Vision, Ocular , Animals , Kinetics , Mice , Mice, Inbred C57BL , Photoreceptor Cells/metabolism , Protein Binding , Protein Multimerization , Rhodopsin/metabolism , Transducin/metabolism
3.
PLoS Genet ; 9(12): e1003960, 2013.
Article in English | MEDLINE | ID: mdl-24339785

ABSTRACT

The second messengers cAMP and cGMP activate their target proteins by binding to a conserved cyclic nucleotide-binding domain (CNBD). Here, we identify and characterize an entirely novel CNBD-containing protein called CRIS (cyclic nucleotide receptor involved in sperm function) that is unrelated to any of the other members of this protein family. CRIS is exclusively expressed in sperm precursor cells. Cris-deficient male mice are either infertile due to a lack of sperm resulting from spermatogenic arrest, or subfertile due to impaired sperm motility. The motility defect is caused by altered Ca(2+) regulation of flagellar beat asymmetry, leading to a beating pattern that is reminiscent of sperm hyperactivation. Our results suggest that CRIS interacts during spermiogenesis with Ca(2+)-regulated proteins that--in mature sperm--are involved in flagellar bending.


Subject(s)
Carrier Proteins/genetics , Cyclic AMP/genetics , Flagella/genetics , Protein Binding/genetics , Spermatogenesis/genetics , Animals , Calcium/metabolism , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Flagella/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Male , Mice , Phosphorylation , Signal Transduction/genetics , Sperm Motility/genetics , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...