Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav ; 6(3): e00437, 2016 03.
Article in English | MEDLINE | ID: mdl-27099800

ABSTRACT

INTRODUCTION: We hypothesized that cerebral alterations in edema, perfusion, and/or intracranial pressure (ICP) are related to the development of acute mountain sickness (AMS). METHODS: To vary AMS, we manipulated ambient oxygen, barometric pressure, and exercise duration. Thirty-six subjects were tested before, during and after 8 h exposures in (1) normobaric normoxia (NN; 300 m elevation equivalent); (2) normobaric hypoxia (NH; 4400 m equivalent); and (3) hypobaric hypoxia (HH; 4400 m equivalent). After a passive 15 min ascent, each subject participated in either 10 or 60 min of cycling exercise at 50% of heart rate reserve. We measured tissue absorption and scattering via radio-frequency near-infrared spectroscopy (NIRS), optic nerve sheath diameter (ONSD) via ultrasound, and AMS symptoms before, during, and after environmental exposures. RESULTS: We observed significant increases in NIRS tissue scattering of 0.35 ± 0.11 cm(-1) (P = 0.001) in subjects with AMS (i.e., AMS+), consistent with mildly increased cerebral edema. We also noted a small, but significant increase in total hemoglobin concentrations with AMS+, 3.2 ± 0.8 µmolL(-1) (P < 0.0005), consistent with increased cerebral perfusion. No effect of exercise duration was found, nor did we detect differences between NH and HH. ONSD assays documented a small but significant increase in ONSD (0.11 ± 0.02 mm; P < 0.0005) with AMS+, suggesting mildly elevated ICP, as well as further increased ONSD with longer exercise duration (P = 0.005). CONCLUSION: In AMS+, we found evidence of cerebral edema, elevated cerebral perfusion, and elevated ICP. The observed changes were small but consistent with the reversible nature of AMS.


Subject(s)
Altitude Sickness/physiopathology , Acute Disease , Adult , Atmospheric Pressure , Brain Edema/physiopathology , Cerebrovascular Circulation/physiology , Exercise/physiology , Female , Heart Rate/physiology , Humans , Hypoxia/complications , Intracranial Hypertension/physiopathology , Intracranial Pressure/physiology , Male , Oxygen/metabolism , Spectroscopy, Near-Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...