Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neurobiol Dis ; 177: 105991, 2023 02.
Article in English | MEDLINE | ID: mdl-36623608

ABSTRACT

Neurogranin (Ng), a post-synaptic protein involved in memory formation, has been investigated as a biomarker in the cerebrospinal fluid (CSF) in Alzheimer's disease (AD) and ageing. CSF Ng levels are elevated in AD relative to healthy controls and correlate with cognition; however, few studies have focused on Ng abundance in the brain. Synapse loss in the brain correlates closely with cognitive decline in AD making synaptic biomarkers potentially important for tracking disease progression, but the links between synaptic protein changes in CSF and brain remain incompletely understood. In the current study, Ng abundance was examined in post-mortem human brain tissue across AD, healthy ageing (HA), and mid-life (ML) cohorts. Ng levels were quantified in three brain regions associated with cognitive change found during ageing and neurodegenerative diseases, namely the middle temporal gyrus, primary visual cortex and the posterior hippocampus using immunohistochemistry. To support immunohistochemical analysis, total homogenate and biochemically enriched synaptic fractions from available temporal gyrus tissues were examined by immunoblot. Finally, we examined whether Ng is associated with lifetime cognitive ageing. Ng levels were significantly reduced in AD relative to HA and ML cases across all regions. Additionally Ng was significantly reduced in HA in comparison to ML in the primary visual cortex. Immunoblotting confirms reduced Ng levels in AD cases supporting immunohistochemical results. Interestingly, there was also a significant reduction of synapse-associated Ng in our group who had lifetime cognitive decline in comparison to the group with lifetime cognitive resilience indicating loss of neurogranin in remaining synapses during ageing is associated with cognitive decline. Our findings indicate that increases in CSF Ng reflect loss of brain neurogranin and support the use of CSF Ng as a biomarker of AD and potentially of cognitive decline in healthy ageing.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/metabolism , Neurogranin/cerebrospinal fluid , Cognitive Dysfunction/metabolism , Brain/metabolism , Biomarkers/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism
2.
Alzheimers Dement ; 19(6): 2560-2574, 2023 06.
Article in English | MEDLINE | ID: mdl-36547260

ABSTRACT

INTRODUCTION: It remains unclear why age increases risk of Alzheimer's disease and why some people experience age-related cognitive decline in the absence of dementia. Here we test the hypothesis that resilience to molecular changes in synapses contribute to healthy cognitive ageing. METHODS: We examined post-mortem brain tissue from people in mid-life (n = 15), healthy ageing with either maintained cognition (n = 9) or lifetime cognitive decline (n = 8), and Alzheimer's disease (n = 13). Synapses were examined with high resolution imaging, proteomics, and RNA sequencing. Stem cell-derived neurons were challenged with Alzheimer's brain homogenate. RESULTS: Synaptic pathology increased, and expression of genes involved in synaptic signaling decreased between mid-life, healthy ageing and Alzheimer's. In contrast, brain tissue and neurons from people with maintained cognition during ageing exhibited decreases in synaptic signaling genes compared to people with cognitive decline. DISCUSSION: Efficient synaptic networks without pathological protein accumulation may contribute to maintained cognition during ageing.


Subject(s)
Alzheimer Disease , Cognitive Aging , Healthy Aging , Synapses , Cognition , Synapses/metabolism , Synapses/pathology , Brain/metabolism , Brain/pathology , Sequence Analysis, RNA , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurons/metabolism , Neurons/pathology , Synaptic Transmission , Postmortem Changes , Healthy Aging/metabolism , Healthy Aging/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Male , Female , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Gliosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...