Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
1.
Thorax ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331579

ABSTRACT

BACKGROUND: The lower airway microbiota in patients with chronic obstructive pulmonary disease (COPD) are likely altered compared with the microbiota in healthy individuals. Information on how the microbiota is affected by smoking, use of inhaled corticosteroids (ICS) and COPD severity is still scarce. METHODS: In the MicroCOPD Study, participant characteristics were obtained through standardised questionnaires and clinical measurements at a single centre from 2012 to 2015. Protected bronchoalveolar lavage samples from 97 patients with COPD and 97 controls were paired-end sequenced with the Illumina MiSeq System. Data were analysed in QIIME 2 and R. RESULTS: Alpha-diversity was lower in patients with COPD than controls (Pielou evenness: COPD=0.76, control=0.80, p=0.004; Shannon entropy: COPD=3.98, control=4.34, p=0.01). Beta-diversity differed with smoking only in the COPD cohort (weighted UniFrac: permutational analysis of variance R2=0.04, p=0.03). Nine genera were differentially abundant between COPD and controls. Genera enriched in COPD belonged to the Firmicutes phylum. Pack years were linked to differential abundance of taxa in controls only (ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) log-fold difference/q-values: Haemophilus -0.05/0.048; Lachnoanaerobaculum -0.04/0.03). Oribacterium was absent in smoking patients with COPD compared with non-smoking patients (ANCOM-BC log-fold difference/q-values: -1.46/0.03). We found no associations between the microbiota and COPD severity or ICS. CONCLUSION: The lower airway microbiota is equal in richness in patients with COPD to controls, but less even. Genera from the Firmicutes phylum thrive particularly in COPD airways. Smoking has different effects on diversity and taxonomic abundance in patients with COPD compared with controls. COPD severity and ICS use were not linked to the lower airway microbiota.

2.
bioRxiv ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38405843

ABSTRACT

Plasmodium parasites, which are the causative agents of malaria, undergo closed mitosis without breakdown of the nuclear envelope. Unlike the closed mitosis in yeast, P. berghei parasites undergo multiple rounds of asynchronous nuclear divisions in a shared cytoplasm result in a multinucleated (8-24) organism prior to formation of daughter cells within an infected red blood cell. During this replication process, intact nuclear pore complexes (NPCs) and their component nucleoporins are likely to play critical roles in parasite growth, facilitating selective bi-directional nucleocytoplasmic transport and genome organization. Here we utilize ultrastructure expansion microscopy (U-ExM) to investigate P. berghei Nup138, Nup221, and Nup313 at the single nucleus level throughout the 24 hour blood-stage replication cycle. Our findings reveal that these Nups are evenly distributed around the nuclei and organized in a rosette structure previously undescribed around the centriolar plaque, which is responsible for intranuclear microtubule nucleation during mitosis. We also detect an increased number of NPCs compared with previously reported, highlighting the power of U-ExM. By adapting the recombination-induced tag exchange (RITE) system to P. berghei, we provide evidence of NPC maintenance, demonstrating Nup221 turnover during parasite asexual replication. Our data shed light on the distribution of NPCs and their homeostasis during the blood-stage replication of P. berghei parasites. Further studies into the nuclear surface of these parasites will allow for a better understanding of parasites nuclear mechanics and organization.

3.
mBio ; 13(6): e0309622, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36445080

ABSTRACT

During vertebrate infection, obligate intracellular malaria parasites develop within a parasitophorous vacuole, which constitutes the interface between the parasite and its hepatocyte or erythrocyte host cells. To traverse this barrier, Plasmodium spp. utilize a dual-function pore formed by EXP2 for nutrient transport and, in the context of the PTEX translocon, effector protein export across the vacuole membrane. While critical to blood-stage survival, less is known about EXP2/PTEX function in the liver stage, although major differences in the export mechanism are suggested by absence of the PTEX unfoldase HSP101 in the intrahepatic vacuole. Here, we employed the glucosamine-activated glmS ribozyme to study the role of EXP2 during Plasmodium berghei liver-stage development in hepatoma cells. Insertion of the glmS sequence into the exp2 3' untranslated region (UTR) enabled glucosamine-dependent depletion of EXP2 after hepatocyte invasion, allowing separation of EXP2 function during intrahepatic development from a recently reported role in hepatocyte invasion. Postinvasion EXP2 knockdown reduced parasite size and largely abolished expression of the mid- to late-liver-stage marker LISP2. As an orthogonal approach to monitor development, EXP2-glmS parasites and controls were engineered to express nanoluciferase. Activation of glmS after invasion substantially decreased luminescence in hepatoma monolayers and in culture supernatants at later time points corresponding to merosome detachment, which marks the culmination of liver-stage development. Collectively, our findings extend the utility of the glmS ribozyme to study protein function in the liver stage and reveal that EXP2 is important for intrahepatic parasite development, indicating that PTEX components also function at the hepatocyte-parasite interface. IMPORTANCE After the mosquito bite that initiates a Plasmodium infection, parasites first travel to the liver and develop in hepatocytes. This liver stage is asymptomatic but necessary for the parasite to transition to the merozoite form, which infects red blood cells and causes malaria. To take over their host cells, avoid immune defenses, and fuel their growth, these obligately intracellular parasites must import nutrients and export effector proteins across a vacuole membrane in which they reside. In the blood stage, these processes depend on a translocon called PTEX, but it is unclear if PTEX also functions during the liver stage. Here, we adapted the glmS ribozyme to control expression of EXP2, the membrane pore component of PTEX, during the liver stage of the rodent malaria parasite Plasmodium berghei. Our results show that EXP2 is important for intracellular development in the hepatocyte, revealing that PTEX components are also functionally important during liver-stage infection.


Subject(s)
Erythrocytes , Hepatocytes , Malaria , Plasmodium berghei , Protozoan Proteins , Carcinoma, Hepatocellular , Erythrocytes/metabolism , Erythrocytes/parasitology , Liver Neoplasms , Malaria/genetics , Malaria/metabolism , Malaria/parasitology , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Plasmodium falciparum/genetics , Protein Transport/genetics , Protein Transport/physiology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , RNA, Catalytic/metabolism , Animals , Mice , Hepatocytes/metabolism , Hepatocytes/parasitology
4.
Proc Natl Acad Sci U S A ; 119(34): e2111932119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969762

ABSTRACT

Glutamate-gated chloride channels (GluCls) are unique to invertebrates and are targeted by macrocyclic lactones. In this study, we cloned an AVR-14B GluCl subunit from adult Brugia malayi, a causative agent of lymphatic filariasis in humans. To elucidate this channel's pharmacological properties, we used Xenopus laevis oocytes for expression and performed two-electrode voltage-clamp electrophysiology. The receptor was gated by the natural ligand L-glutamate (effective concentration, 50% [EC50] = 0.4 mM) and ivermectin (IVM; EC50 = 1.8 nM). We also characterized the effects of nodulisporic acid (NA) on Bma-AVR-14B and NA-produced dual effects on the receptor as an agonist and a type II positive allosteric modulator. Here we report characterization of the complex activity of NA on a nematode GluCl. Bma-AVR-14B demonstrated some unique pharmacological characteristics. IVM did not produce potentiation of L-glutamate-mediated responses but instead, reduced the channel's sensitivity for the ligand. Further electrophysiological exploration showed that IVM (at a moderate concentration of 0.1 nM) functioned as an inhibitor of both agonist and positive allosteric modulatory effects of NA. This suggests that IVM and NA share a complex interaction. The pharmacological properties of Bma-AVR-14B indicate that the channel is an important target of IVM and NA. In addition, the unique electrophysiological characteristics of Bma-AVR-14B could explain the observed variation in drug sensitivities of various nematode parasites. We have also shown the inhibitory effects of IVM and NA on adult worm motility using Worminator. RNA interference (RNAi) knockdown suggests that AVR-14 plays a role in influencing locomotion in B. malayi.


Subject(s)
Brugia malayi , Chloride Channels , Indoles , Animals , Brugia malayi/drug effects , Brugia malayi/genetics , Brugia malayi/metabolism , Chloride Channels/drug effects , Chloride Channels/genetics , Chloride Channels/metabolism , Glutamic Acid/metabolism , Indoles/pharmacology , Ivermectin/pharmacology , Ligands
5.
mBio ; 13(5): e0181522, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36040030

ABSTRACT

Twenty years since the publication of the Plasmodium falciparum and P. berghei genomes one-third of their protein-coding genes still lack functional annotation. In the absence of sequence and structural homology, protein-protein interactions can facilitate functional prediction of such orphan genes by mapping protein complexes in their natural cellular environment. The Plasmodium nuclear pore complex (NPC) is a case in point: it remains poorly defined; its constituents lack conservation with the 30+ proteins described in the NPC of many opisthokonts, a clade of eukaryotes that includes fungi and animals, but not Plasmodium. Here, we developed a labeling methodology based on TurboID fusion proteins, which allows visualization of the P. berghei NPC and facilitates the identification of its components. Following affinity purification and mass spectrometry, we identified 4 known nucleoporins (Nups) (138, 205, 221, and the bait 313), and verify interaction with the putative phenylalanine-glycine (FG) Nup637; we assigned 5 proteins lacking annotation (and therefore meaningful homology with proteins outside the genus) to the NPC, which is confirmed by green fluorescent protein (GFP) tagging. Based on gene deletion attempts, all new Nups - Nup176, 269, 335, 390, and 434 - are essential to parasite survival. They lack primary sequence homology with proteins outside the Plasmodium genus; albeit 2 incorporate short domains with structural homology to human Nup155 and yeast Nup157, and the condensin SMC (Structural Maintenance Of Chromosomes 4). The protocols developed here showcase the power of proximity labeling for elucidating protein complex composition and annotation of taxonomically restricted genes in Plasmodium. It opens the door to exploring the function of the Plasmodium NPC and understanding its evolutionary position. IMPORTANCE The nuclear pore complex (NPC) is a platform for constant evolution and has been used to study the evolutionary patterns of early-branching eukaryotes. The Plasmodium NPC is poorly defined due to its evolutionary divergent nature making it impossible to characterize it via homology searches. Although 2 decades have passed since the publication of the Plasmodium genome, 30% of the genes still lack functional annotation. Our study demonstrates the ability of proximity labeling using TurboID to assign function to orphan proteins in the malaria parasite. We have identified a total of 10 Nups that will allow further study of NPC dynamics, structural elements, involvement in nucleocytoplasmic transport, and unique non-transport functions of nucleoporins that provide adaptability to this malaria parasite.


Subject(s)
Malaria , Nuclear Pore , Humans , Active Transport, Cell Nucleus/genetics , Glycine/metabolism , Green Fluorescent Proteins/analysis , Malaria/metabolism , Nuclear Pore/chemistry , Nuclear Pore/genetics , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Phenylalanine/chemistry , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Saccharomyces cerevisiae/metabolism
6.
PLoS One ; 17(5): e0267195, 2022.
Article in English | MEDLINE | ID: mdl-35551278

ABSTRACT

BACKGROUND: Few studies have examined the stability of the pulmonary mycobiome. We report longitudinal changes in the oral and pulmonary mycobiome of participants with and without COPD in a large-scale bronchoscopy study (MicroCOPD). METHODS: Repeated sampling was performed in 30 participants with and 21 without COPD. We collected an oral wash (OW) and a bronchoalveolar lavage (BAL) sample from each participant at two time points. The internal transcribed spacer 1 region of the ribosomal RNA gene cluster was PCR amplified and sequenced on an Illumina HiSeq sequencer. Differences in taxonomy, alpha diversity, and beta diversity between the two time points were compared, and we examined the effect of intercurrent antibiotic use. RESULTS: Sample pairs were dominated by Candida. We observed less stability in the pulmonary taxonomy compared to the oral taxonomy, additionally emphasised by a higher Yue-Clayton measure in BAL compared to OW (0.69 vs 0.22). No apparent effect was visually seen on taxonomy from intercurrent antibiotic use or participant category. We found no systematic variation in alpha diversity by time either in BAL (p-value 0.16) or in OW (p-value 0.97), and no obvious clusters on bronchoscopy number in PCoA plots. Pairwise distance analyses showed that OW samples from repeated sampling appeared more stable compared to BAL samples using the Bray-Curtis distance metric (p-value 0.0012), but not for Jaccard. CONCLUSION: Results from the current study propose that the pulmonary mycobiome is less stable than the oral mycobiome, and neither COPD diagnosis nor intercurrent antibiotic use seemed to influence the stability.


Subject(s)
Mycobiome , Pulmonary Disease, Chronic Obstructive , Anti-Bacterial Agents , Bronchoalveolar Lavage Fluid , Humans , Longitudinal Studies , Lung
7.
Ecol Evol ; 11(15): 10720-10723, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34367608

ABSTRACT

We present comments on an article published by Confer et al. (Ecology and Evolution, 10, 2020). Confer et al. (2020) aggregate data from multiple studies of social pairing between Vermivora chrysoptera and V. cyanoptera, two wood warblers in the family Parulidae that hybridize extensively where they co-occur. From analysis of these data, they conclude there is near-complete reproductive isolation between these two species. In our reply, we show that this finding is not supported by other lines of evidence, and significant drawbacks of their study design preclude such strong conclusions. In our critique, we show that (a) coarse-scale plumage classifications cannot be used to accurately estimate hybrid ancestry in Vermivora; (b) extra-pair paternity is very high in Vermivora and is likely facilitating hybridization, yet was not considered by Confer et al. (2020), and we suggest this will have a substantial influence on the interpretation of reproductive isolation in the system; and (c) the central finding of strong total reproductive isolation is not compatible with the results of other long-term studies, which demonstrate low isolation and high gene flow. We conclude with a more comprehensive interpretation of hybridization and reproductive isolation in Vermivora warblers.

8.
PLoS One ; 16(4): e0248967, 2021.
Article in English | MEDLINE | ID: mdl-33826639

ABSTRACT

BACKGROUND: The fungal part of the pulmonary microbiome (mycobiome) is understudied. We report the composition of the oral and pulmonary mycobiome in participants with COPD compared to controls in a large-scale single-centre bronchoscopy study (MicroCOPD). METHODS: Oral wash and bronchoalveolar lavage (BAL) was collected from 93 participants with COPD and 100 controls. Fungal DNA was extracted before sequencing of the internal transcribed spacer 1 (ITS1) region of the fungal ribosomal RNA gene cluster. Taxonomic barplots were generated, and we compared taxonomic composition, Shannon index, and beta diversity between study groups, and by use of inhaled steroids. RESULTS: The oral and pulmonary mycobiomes from controls and participants with COPD were dominated by Candida, and there were more Candida in oral samples compared to BAL for both study groups. Malassezia and Sarocladium were also frequently found in pulmonary samples. No consistent differences were found between study groups in terms of differential abundance/distribution. Alpha and beta diversity did not differ between study groups in pulmonary samples, but beta diversity varied with sample type. The mycobiomes did not seem to be affected by use of inhaled steroids. CONCLUSION: Oral and pulmonary samples differed in taxonomic composition and diversity, possibly indicating the existence of a pulmonary mycobiome.


Subject(s)
Fungi , Lung/microbiology , Mouth/microbiology , Mycobiome/drug effects , Pulmonary Disease, Chronic Obstructive/microbiology , Aged , Case-Control Studies , DNA, Fungal/isolation & purification , Female , Fungi/classification , Fungi/drug effects , Fungi/isolation & purification , Humans , Male , Middle Aged , Norway/epidemiology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/epidemiology
9.
Mol Biochem Parasitol ; 241: 111347, 2021 01.
Article in English | MEDLINE | ID: mdl-33347893

ABSTRACT

Substrate-dependent gliding motility is key to malaria transmission. It mediates host cell traversal, invasion and infection by Plasmodium and related apicomplexan parasites. The 110 amino acid-long cell surface protein LIMP is essential for P. berghei sporozoites where it is required for the invasion of the mosquito's salivary glands and the liver cells of the rodent host. Here we define an additional role for LIMP during mosquito invasion by the ookinete. limp mRNA is provided as a translationally repressed mRNP (messenger ribonucleoprotein) by the female gametocyte and the protein translated in the ookinete. Parasites depleted of limp (Δlimp) develop ookinetes with apparent normal morphology and no defect during in vitro gliding motility, and yet display a pronounced reduction in oocyst numbers; compared to wildtype 82 % more Δlimp ookinetes remain within the mosquito blood meal explaining the decrease in oocysts. As in the sporozoite, LIMP exerts a profound role on ookinete infection of the mosquito.


Subject(s)
Culicidae/metabolism , Culicidae/parasitology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/parasitology , Lysosomal Membrane Proteins/genetics , Plasmodium berghei , Protozoan Proteins/genetics , Animals , Gene Expression , Genes, Reporter , Lysosomal Membrane Proteins/metabolism , Malaria/parasitology , Malaria/transmission , Plasmodium berghei/physiology , Protozoan Proteins/metabolism
10.
Respirology ; 26(4): 342-351, 2021 04.
Article in English | MEDLINE | ID: mdl-33164314

ABSTRACT

BACKGROUND AND OBJECTIVE: Activation of the blood coagulation system is a common observation in inflammatory diseases. The role of coagulation in COPD is underexplored. METHODS: The study included 413 COPD patients and 49 controls from the 3-year Bergen COPD Cohort Study (BCCS). One hundred and forty-eight COPD patients were also examined during AECOPD. The plasma markers of coagulation activation, TAT complex, APC-PCI complex and D-dimer, were measured at baseline and during exacerbations by enzyme immunoassays. Differences in levels of the markers between stable COPD patients and controls, and between stable COPD and AECOPD were examined. The associations between coagulation markers and later AECOPD and mortality were examined by negative binomial and Cox regression analyses. RESULTS: TAT was significantly lower in stable COPD (1.03 ng/mL (0.76-1.44)) than in controls (1.28 (1.04-1.49), P = 0.002). During AECOPD, all markers were higher than in the stable state: TAT 2.56 versus 1.43 ng/mL, APC-PCI 489.3 versus 416.4 ng/mL and D-dimer 763.5 versus 479.7 ng/mL (P < 0.001 for all). Higher D-dimer in stable COPD predicted a higher mortality (HR: 1.60 (1.24-2.05), P < 0.001). Higher TAT was associated with both an increased risk of later exacerbations, with a yearly incidence rate ratio of 1.19 (1.04-1.37), and a faster time to the first exacerbation (HR: 1.25 (1.10-1.42), P = 0.001, all after adjustment). CONCLUSION: Activation of the coagulation system is increased during COPD exacerbations. Coagulation markers are potential predictors of later COPD exacerbations and mortality.


Subject(s)
Percutaneous Coronary Intervention , Pulmonary Disease, Chronic Obstructive , Blood Coagulation , Cohort Studies , Disease Progression , Humans
11.
Invert Neurosci ; 20(4): 17, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978688

ABSTRACT

Cestodes are common gastrointestinal parasites of humans and livestock. They attach to the host gut and, without a mouth or intestinal system, absorb nutrients through their epidermis. Here we show that despite this simplified anatomy and sessile lifestyle, they maintain a complex neuromuscular system. We used fluorescently labelled phalloidin as a specific probe for filamentous actin to define the overall organisation of several distinct muscle systems in the cyclophyllidean Moniezia expansa. Like all flatworms, the body wall musculature below the neodermis of this intestinal parasite of sheep is characterised by outer circular and inner longitudinal muscle fibres. Diagonal fibres, typically found in free-living and trematode platyhelminths, on the other hand, are notably absent. Prominent longitudinal sheaths dominate the parenchyma and provide retractor muscles to the four acetabula in the scolex; they attach at the bottom of each cup-shaped holdfast. Within sexually mature proglottids, circular fibres dominate the duct walls of the male and female reproductive systems. Nerve cells and fibres that express serotonin or neuropeptide F supply well-developed innervation to several of the described muscle systems: emanating from the central nervous system, fibres in the periphery develop pervasive nerve nets that anastomose within body wall musculature as well as the parenchymal longitudinal and oblique muscle fibres, and innervate the sexual organs and gonopore in mature proglottids. Using homology searches, we provide evidence for 20 neuropeptide precursors together with four prepropeptide processing enzymes as well as several 5-HT signalling components to be represented in the Moniezia transcriptome.


Subject(s)
Cestoda/physiology , Muscles/physiology , Nervous System , Actins , Animals , Neuropeptides , Phalloidine , Sheep
12.
PLoS Pathog ; 16(4): e1008396, 2020 04.
Article in English | MEDLINE | ID: mdl-32243475

ABSTRACT

Nematode parasites infect approximately 1.5 billion people globally and are a significant public health concern. There is an accepted need for new, more effective anthelmintic drugs. Nicotinic acetylcholine receptors on parasite nerve and somatic muscle are targets of the cholinomimetic anthelmintics, while glutamate-gated chloride channels in the pharynx of the nematode are affected by the avermectins. Here we describe a novel nicotinic acetylcholine receptor on the nematode pharynx that is a potential new drug target. This homomeric receptor is comprised of five non-α EAT-2 subunits and is not sensitive to existing cholinomimetic anthelmintics. We found that EAT-18, a novel auxiliary subunit protein, is essential for functional expression of the receptor. EAT-18 directly interacts with the mature receptor, and different homologs alter the pharmacological properties. Thus we have described not only a novel potential drug target but also a new type of obligate auxiliary protein for nAChRs.


Subject(s)
Antinematodal Agents/pharmacology , Ascaris suum/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Gene Expression Regulation/drug effects , Helminth Proteins/metabolism , Pharynx/metabolism , Receptors, Nicotinic/metabolism , Acetylcholine/pharmacology , Animals , Ascaris suum/drug effects , Ascaris suum/genetics , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Helminth Proteins/genetics , Pharynx/drug effects , Receptors, Nicotinic/genetics
13.
Heliyon ; 6(3): e03571, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32211545

ABSTRACT

Tests with binary outcomes (e.g., positive versus negative) to indicate a binary state of nature (e.g., disease agent present versus absent) are common. These tests are rarely perfect: chances of a false positive and a false negative always exist. Imperfect results cannot be directly used to infer the true state of the nature; information about the method's uncertainty (i.e., the two error rates and our knowledge of the subject) must be properly accounted for before an imperfect result can be made informative. We discuss statistical methods for incorporating the uncertain information under two scenarios, based on the purpose of conducting a test: inference about the subject under test and inference about the population represented by test subjects. The results are applicable to almost all tests. The importance of properly interpreting results from imperfect tests is universal, although how to handle the uncertainty is inevitably case-specific. The statistical considerations not only will change the way we interpret test results, but also how we plan and carry out tests that are known to be imperfect. Using a numerical example, we illustrate the post-test steps necessary for making the imperfect test results meaningful.

15.
Expert Opin Ther Targets ; 23(10): 865-882, 2019 10.
Article in English | MEDLINE | ID: mdl-31580163

ABSTRACT

Introduction: Adverse immune activation contributes to many central nervous system (CNS) disorders. All main CNS cell types express toll-like receptor 4 (TLR 4). This receptor is critical for a myriad of immune functions such as cytokine secretion and phagocytic activity of microglia; however, imbalances in TLR 4 activation can contribute to the progression of neurodegenerative diseases. Areas covered: We considered available evidence implicating TLR 4 activation in the following CNS pathologies: Alzheimer's disease, Parkinson's disease, ischemic stroke, traumatic brain injury, multiple sclerosis, multiple systems atrophy, and Huntington's disease. We reviewed studies reporting effects of TLR 4-specific antagonists and agonists in models of peripheral and CNS diseases from the perspective of possible future use of TLR 4 ligands in CNS disorders. Expert opinion: TLR 4-specific antagonists could suppress neuroinflammation by reducing overproduction of inflammatory mediators; however, they may interfere with protein clearance mechanisms and myelination. Agonists that specifically activate myeloid differentiation primary-response protein 88 (MyD88)-independent pathway of TLR 4 signaling could facilitate beneficial glial phagocytic activity with limited activity as inducers of proinflammatory mediators. Deciphering the disease stage-specific involvement of TLR 4 in CNS pathologies is crucial for the future clinical development of TLR 4 agonists and antagonists.


Subject(s)
Central Nervous System Diseases/drug therapy , Inflammation/drug therapy , Toll-Like Receptor 4/metabolism , Animals , Central Nervous System Diseases/physiopathology , Drug Development , Humans , Inflammation/physiopathology , Molecular Targeted Therapy , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/physiopathology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/antagonists & inhibitors
16.
PLoS One ; 14(9): e0222226, 2019.
Article in English | MEDLINE | ID: mdl-31553751

ABSTRACT

Ookinetes, one of the motile and invasive forms of the malaria parasite, rely on gliding motility in order to establish an infection in the mosquito host. Here we characterize the protein PBANKA_0407300 which is conserved in the Plasmodium genus but lacks significant similarity to proteins of other eukaryotes. It is expressed in gametocytes and throughout the invasive mosquito stages of P. berghei, but is absent from asexual blood stages. Mutants lacking the protein developed morphologically normal ookinetes that were devoid of productive motility although some stretching movement could be detected. We therefore named the protein Ookinete Motility Deficient (OMD). Several key factors known to be involved in motility however were normally expressed and localized in the mutant. Importantly, the mutant failed to establish an infection in the mosquito which resulted in a total malaria transmission blockade.


Subject(s)
Anopheles/parasitology , Malaria/transmission , Plasmodium berghei/physiology , Protozoan Proteins/physiology , Animals , Female , Fluorescent Antibody Technique, Indirect , Gene Knockdown Techniques , Malaria/parasitology , Mice , Microscopy, Electron, Scanning , Protozoan Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction
17.
Proc Natl Acad Sci U S A ; 116(37): 18272-18274, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31451666

ABSTRACT

Animal migration demands an interconnected suite of adaptations for individuals to navigate over long distances. This trait complex is crucial for small birds whose migratory behaviors-such as directionality-are more likely innate, rather than being learned as in many longer-lived birds. Identifying causal genes has been a central goal of migration ecology, and this endeavor has been furthered by genome-scale comparisons. However, even the most successful studies of migration genetics have achieved low-resolution associations, identifying large chromosomal regions that encompass hundreds of genes, one or more of which might be causal. Here we leverage the genomic similarity among golden-winged (Vermivora chrysoptera) and blue-winged (V. cyanoptera) warblers to identify a single gene-vacuolar protein sorting 13A (VPS13A)-that is associated with distinct differences in migration to Central American (CA) or South American (SA) wintering areas. We find reduced sequence variation in this gene region for SA wintering birds, and show this is the likely result of natural selection on this locus. In humans, variants of VPS13A are linked to the neurodegenerative disorder chorea-acanthocytosis. This association provides one of the strongest gene-level associations with avian migration differences.


Subject(s)
Animal Migration , Genetic Association Studies , Selection, Genetic , Songbirds/physiology , Vesicular Transport Proteins/genetics , Animals , Evolution, Molecular , Genome , Genomics , Geography , Songbirds/genetics , Vesicular Transport Proteins/metabolism
18.
Ecol Evol ; 9(10): 5542-5550, 2019 May.
Article in English | MEDLINE | ID: mdl-31160981

ABSTRACT

Niche breadth is predicted to correlate with environmental heterogeneity, such that generalists will evolve in heterogeneous environments and specialists will evolve in environments that vary less over space and time. We tested the hypothesis that lizards in a heterogeneous environment were generalists compared to lizards in a homogeneous environment. We compared niche breadths of greater short-horned lizards by quantifying resource selection in terms of two different niche axes, diet (prey items and trophic level), and microhabitat (ground cover and shade cover) between two populations occurring at different elevations. We assessed the heterogeneity of dietary and microhabitat resources within each population's environment by quantifying the availability of prey items, ground cover, and shade cover in each environment. Overall, our results demonstrate that despite differences in resource heterogeneity between elevations, resource selection did not consistently differ between populations. Moreover, environmental heterogeneity was not associated with generalization of resource use. The low-elevation site had a broader range of available prey items, yet lizards at the high-elevation site demonstrated more generalization in diet. In contrast, the high-elevation site had a broader range of available microhabitats, but the lizard populations at both sites were similarly generalized for shade cover selection and were similarly specialized for ground cover selection. Our results demonstrate that environmental heterogeneity of a particular resource does not necessarily predict the degree to which organisms specialize on that resource.

19.
Respir Med ; 152: 81-88, 2019 06.
Article in English | MEDLINE | ID: mdl-31128615

ABSTRACT

BACKGROUND: COPD patients have an increased risk of developing lung cancer, but the underlying mechanisms are poorly understood. We aimed to identify risk factors for lung cancer in patients from the Bergen COPD Cohort Study. METHODS: We compared 433 COPD patients with 279 healthy controls, all former or current smokers. All COPD patients had FEV1<80% and FEV1/FVC-ratio<0.7. Baseline predictors were sex, age, spirometry, body composition, smoking history, emphysema assessed by CT, chronic bronchitis, prior exacerbation frequency, Charlson Comorbidity Score, inhalation medication and 44 serum/plasma inflammatory biomarkers. Patients were followed up for 9 years recording incidence of lung cancer. Cox-regression models were fitted for the statistical analyses. The biomarkers were evaluated using principal component analysis. RESULTS: 28 COPD patients and 3 controls developed lung cancer, COPD patients had a significantly higher risk of developing lung cancer, (HR 5.0; 95% CI 1.5-17.1, p < 0.01, adjusted values). Among COPD patients, emphysema (HR 4.4; 1.7-10.8, p < 0.01) and obesity (HR 3.3; 1.3-8.5, p = 0.02) were associated with a higher cancer rate. Use of inhaled steroids was associated with a lower rate (HR 0.4; 0.2-0.9, p = 0.03). Smoking status, pack-years smoked or levels of systemic inflammatory markers, except for interferon gamma-induced protein 10, did not affect the lung cancer rate in patients with COPD. CONCLUSION: Patients with COPD have a higher lung cancer rate compared to healthy controls adjusted for smoking. The presence of emphysema and obesity in COPD predicted a higher lung cancer risk in COPD patients. Systemic inflammation was not associated with increased lung cancer risk.


Subject(s)
Lung Neoplasms/epidemiology , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Emphysema/epidemiology , Administration, Inhalation , Aged , Biomarkers/blood , Bronchitis, Chronic/complications , Bronchitis, Chronic/epidemiology , Cohort Studies , Comorbidity , Female , Follow-Up Studies , Humans , Incidence , Inflammation/metabolism , Male , Middle Aged , Obesity/complications , Obesity/epidemiology , Predictive Value of Tests , Prospective Studies , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Emphysema/diagnostic imaging , Risk Factors , Smoking/adverse effects , Smoking/epidemiology , Spirometry/methods , Steroids/administration & dosage , Steroids/adverse effects , Steroids/therapeutic use , Symptom Flare Up
20.
PeerJ ; 62019.
Article in English | MEDLINE | ID: mdl-30918746

ABSTRACT

[This corrects the article DOI: 10.7717/peerj.4319.].

SELECTION OF CITATIONS
SEARCH DETAIL
...