Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 9(1): 3350, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30135490

ABSTRACT

Mucosal associated invariant T (MAIT) cells recognise conserved microbial metabolites from riboflavin synthesis. Striking evolutionary conservation and pulmonary abundance implicate them in antibacterial host defence, yet their functions in protection against clinically important pathogens are unknown. Here we show that mouse Legionella longbeachae infection induces MR1-dependent MAIT cell activation and rapid pulmonary accumulation of MAIT cells associated with immune protection detectable in immunocompetent host animals. MAIT cell protection is more evident in mice lacking CD4+ cells, and adoptive transfer of MAIT cells rescues immunodeficient Rag2-/-γC-/- mice from lethal Legionella infection. Protection is dependent on MR1, IFN-γ and GM-CSF, but not IL-17A, TNF or perforin, and enhanced protection is detected earlier after infection of mice antigen-primed to boost MAIT cell numbers before infection. Our findings define a function for MAIT cells in protection against a major human pathogen and indicate a potential role for vaccination to enhance MAIT cell immunity.


Subject(s)
Legionella longbeachae/pathogenicity , Lung/microbiology , Mucosal-Associated Invariant T Cells/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Interleukin-17/metabolism , Legionella longbeachae/immunology , Legionellosis/immunology , Legionellosis/microbiology , Lung/metabolism , Male , Mice , Mucosal-Associated Invariant T Cells/metabolism , Perforin/metabolism
2.
Acta Neuropathol ; 130(3): 373-87, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26025657

ABSTRACT

Diabetic neuropathy (DNP), afflicting sensory and motor nerve fibers, is a major complication in diabetes. The underlying cellular mechanisms of axon degeneration are poorly understood. IGFBP5, an inhibitory binding protein for insulin-like growth factor 1 (IGF1) is highly up-regulated in nerve biopsies of patients with DNP. We investigated the pathogenic relevance of this finding in transgenic mice overexpressing IGFBP5 in motor axons and sensory nerve fibers. These mice develop motor axonopathy and sensory deficits similar to those seen in DNP. Motor axon degeneration was also observed in mice in which the IGF1 receptor (IGF1R) was conditionally depleted in motoneurons, indicating that reduced activity of IGF1 on IGF1R in motoneurons is responsible for the observed effect. These data provide evidence that elevated expression of IGFBP5 in diabetic nerves reduces the availability of IGF1 for IGF1R on motor axons, thus leading to progressive neurodegeneration. Inhibition of IGFBP5 could thus offer novel treatment strategies for DNP.


Subject(s)
Axons/physiology , Carrier Proteins/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetic Neuropathies/physiopathology , Motor Neurons/physiology , Nerve Degeneration/physiopathology , Animals , Axons/pathology , Cell Enlargement , Cell Survival/physiology , Cells, Cultured , Diabetes Mellitus, Experimental/pathology , Diabetic Neuropathies/pathology , Humans , Mice, Transgenic , Motor Activity/physiology , Motor Neurons/pathology , Nerve Degeneration/pathology , Phrenic Nerve/pathology , Phrenic Nerve/physiopathology , Receptor, IGF Type 1/metabolism , Sciatic Nerve/pathology , Sciatic Nerve/physiopathology , Sensation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...