Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Cardiooncology ; 10(1): 40, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909263

ABSTRACT

BACKGROUND: The anthracycline doxorubicin (DOX) is a highly effective anticancer agent, especially in breast cancer and lymphoma. However, DOX can cause cancer therapy-related cardiovascular toxicity (CTR-CVT) in patients during treatment and in survivors. Current diagnostic criteria for CTR-CVT focus mainly on left ventricular systolic dysfunction, but a certain level of damage is required before it can be detected. As diastolic dysfunction often precedes systolic dysfunction, the current study aimed to identify functional and molecular markers of DOX-induced CTR-CVT with a focus on diastolic dysfunction. METHODS: Male C57BL/6J mice were treated with saline or DOX (4 mg/kg, weekly i.p. injection) for 2 and 6 weeks (respectively cumulative dose of 8 and 24 mg/kg) (n = 8 per group at each time point). Cardiovascular function was longitudinally investigated using echocardiography and invasive left ventricular pressure measurements. Subsequently, at both timepoints, myocardial tissue was obtained for proteomics (liquid-chromatography with mass-spectrometry). A cohort of patients with CTR-CVT was used to complement the pre-clinical findings. RESULTS: DOX-induced a reduction in left ventricular ejection fraction from 72 ± 2% to 55 ± 1% after 2 weeks (cumulative 8 mg/kg DOX). Diastolic dysfunction was demonstrated as prolonged relaxation (increased tau) and heart failure was evident from pulmonary edema after 6 weeks (cumulative 24 mg/kg DOX). Myocardial proteomic analysis revealed an increased expression of 12 proteins at week 6, with notable upregulation of SERPINA3N in the DOX-treated animals. The human ortholog SERPINA3 has previously been suggested as a marker in CTR-CVT. Upregulation of SERPINA3N was confirmed by western blot, immunohistochemistry, and qPCR in murine hearts. Thereby, SERPINA3N was most abundant in the endothelial cells. In patients, circulating SERPINA3 was increased in plasma of CTR-CVT patients but not in cardiac biopsies. CONCLUSION: We showed that mice develop heart failure with impaired systolic and diastolic function as result of DOX treatment. Additionally, we could identify increased SERPINA3 levels in the mice as well as patients with DOX-induced CVT and demonstrated expression of SERPINA3 in the heart itself, suggesting that SERPINA3 could serve as a novel biomarker.

2.
Sci Rep ; 14(1): 12653, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825590

ABSTRACT

Nonischaemic myocardial fibrosis is associated with cardiac dysfunction, malignant arrhythmias and sudden cardiac death. In the absence of a specific aetiology, its finding as late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging is often attributed to preceding viral myocarditis. Athletes presenting with ventricular arrhythmias often have nonischaemic LGE. Previous studies have demonstrated an adverse effect of exercise on the course of acute viral myocarditis. In this study, we have investigated, for the first time, the impact of endurance training on longer-term outcomes such as myocardial fibrosis and arrhythmogenicity in a murine coxsackievirus B3 (CVB)-induced myocarditis model. Male C57BL/6J mice (n = 72) were randomly assigned to 8 weeks of forced treadmill running (EEX) or no exercise (SED). Myocarditis was induced 2 weeks later by a single intraperitoneal injection with CVB, versus vehicle in the controls (PBS). In a separate study, mice (n = 30) were subjected to pretraining for 13 weeks (preEEX), without continuation of exercise during myocarditis. Overall, continuation of exercise resulted in a milder clinical course of viral disease, with less weight loss and better preserved running capacity. CVB-EEX and preEEX-CVB mice tended to have a lower mortality rate. At sacrifice (i.e. 6 weeks after inoculation), the majority of virus was cleared from the heart. Histological assessment demonstrated prominent myocardial inflammatory infiltration and cardiomyocyte loss in both CVB groups. Inflammatory lesions in the CVB-EEX group contained higher numbers of pro-inflammatory cells (iNOS-reactive macrophages and CD8+ T lymphocytes) compared to these in CVB-SED. Treadmill running during myocarditis increased interstitial fibrosis [82.4% (CVB-EEX) vs. 56.3% (CVB-SED); P = 0.049]. Additionally, perivascular and/or interstitial fibrosis with extensive distribution was more likely to occur with exercise [64.7% and 64.7% (CVB-EEX) vs. 50% and 31.3% (CVB-SED); P = 0.048]. There was a numerical, but not significant, increase in the number of scars per cross-section (1.9 vs. 1.2; P = 0.195), with similar scar distribution and histological appearance in CVB-EEX and CVB-SED. In vivo electrophysiology studies did not induce sustained monomorphic ventricular tachycardia, only nonsustained (usually polymorphic) runs. Their cumulative beat count and duration paralleled the increased fibrosis between CVB-EEX and CVB-SED, but the difference was not significant (P = 0.084 for each). Interestingly, in mice that were subjected to pretraining only without continuation of exercise during myocarditis, no differences between pretrained and sedentary mice were observed at sacrifice (i.e. 6 weeks after inoculation and training cessation) with regard to myocardial inflammation, fibrosis, and ventricular arrhythmogenicity. In conclusion, endurance exercise during viral myocarditis modulates the inflammatory process with more pro-inflammatory cells and enhances perivascular and interstitial fibrosis development. The impact on ventricular arrhythmogenesis requires further exploration.


Subject(s)
Arrhythmias, Cardiac , Coxsackievirus Infections , Disease Models, Animal , Enterovirus B, Human , Fibrosis , Mice, Inbred C57BL , Myocarditis , Physical Conditioning, Animal , Animals , Myocarditis/virology , Myocarditis/pathology , Male , Mice , Arrhythmias, Cardiac/etiology , Coxsackievirus Infections/pathology , Coxsackievirus Infections/complications , Myocardium/pathology , Endurance Training
3.
JACC CardioOncol ; 6(2): 183-199, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38774014

ABSTRACT

Close monitoring for cardiotoxicity during anthracycline chemotherapy is crucial for early diagnosis and therapy guidance. Currently, monitoring relies on cardiac imaging and serial measurement of cardiac biomarkers like cardiac troponin and natriuretic peptides. However, these conventional biomarkers are nonspecific indicators of cardiac damage. Exploring new, more specific biomarkers with a clear link to the underlying pathomechanism of cardiotoxicity holds promise for increased specificity and sensitivity in detecting early anthracycline-induced cardiotoxicity. miRNAs (microRNAs), small single-stranded, noncoding RNA sequences involved in epigenetic regulation, influence various physiological and pathological processes by targeting expression and translation. Emerging as new biomarker candidates, circulating miRNAs exhibit resistance to degradation and offer a direct pathomechanistic link. This review comprehensively outlines their potential as early biomarkers for cardiotoxicity and their pathomechanistic link.

4.
Cardiovasc Pathol ; 72: 107652, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38750778

ABSTRACT

BACKGROUND AND AIMS: Viral infections are the leading cause of myocarditis. Besides acute cardiac complications, late-stage sequelae such as myocardial fibrosis may develop, importantly impacting the prognosis. Coxsackievirus B3 (CVB)-induced myocarditis in mice is the most commonly used translational model to study viral myocarditis and has provided the majority of our current understanding of the disease pathophysiology. Nevertheless, the late stages of disease, encompassing fibrogenesis and arrhythmogenesis, have been underappreciated in viral myocarditis research to date. The present study investigated the natural history of CVB-induced myocarditis in C57BL/6J mice, expanding the focus beyond the acute phase of disease. In addition, we studied the impact of sex and inoculation dose on the disease course. METHODS AND RESULTS: C57BL/6J mice (12 weeks old; n=154) received a single intraperitoneal injection with CVB to induce viral myocarditis, or vehicle (PBS) as control. Male mice (n=92) were injected with 5 × 105 (regular dose) (RD) or 5 × 106 (high dose) (HD) plaque-forming units of CVB, whereas female mice received the RD only. Animals were sacrificed 1, 2, 4, 8, and 11 weeks after CVB or PBS injection. Virally inoculated mice developed viral disease with a temporary decline in general condition and weight loss, which was less pronounced in female animals (P<.001). In male CVB mice, premature mortality occurred between days 8 and 23 after inoculation (RD: 21%, HD: 20%), whereas all female animals survived. Over the course of disease, cardiac inflammation progressively subsided, with faster resolution in female mice. There were no substantial group differences in the composition of the inflammatory cell infiltrates: predominance of cytotoxic T cells at day 7 and 14, and a switch from arginase1-reactive macrophages to iNOS-reactive macrophages from day 7 to 14 were the main findings. There was concomitant development and maturation of different patterns of myocardial fibrosis, with enhanced fibrogenesis in male mice. Virus was almost completely cleared from the heart by day 14. Serum biomarkers of cardiac damage and cardiac expression of remodeling genes were temporarily elevated during the acute phase of disease. Cardiac CTGF gene upregulation was less prolonged in female CVB animals. In vivo electrophysiology studies at weeks 8 and 11 demonstrated that under baseline conditions (i.e. in the absence of proarrhythmogenic drugs), ventricular arrhythmias could only be induced in CVB animals. The cumulative arrhythmia burden throughout the entire stimulation protocol was not significantly different between CVB and control groups. CONCLUSION: CVB inoculation in C57BL/6J mice represents a model of acute self-limiting viral myocarditis, with progression to different patterns of myocardial fibrosis. Sex, but not inoculation dose, seems to modulate the course of disease.

5.
Talanta ; 271: 125667, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38245959

ABSTRACT

Doxorubicin (dox) is an affordable, and highly effective chemotherapeutic agent used in cancer treatment, yet its application is known to cause cumulative cardiac and renal toxicity. In this study, we employed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to evaluate the distribution of dox in mouse heart and kidney after in vivo treatment. To this end, we performed absolute quantification using an isotopically labeled form (13C d3-dox) as an internal standard. Unfortunately, ion suppression often leads to loss of sensitivity in compound detection and can result in hampered drug quantification. To overcome this issue, we developed an on-tissue chemical derivatization (OTCD) method using Girard's reagent T (GirT). With the developed method, dox signal was increased by two orders of magnitude. This optimized sample preparation enabled a sensible gain in dox detection, making it possible to study its distribution and abundance (up to 0.11 pmol/mm2 in the heart and 0.33 pmol/mm2 in the kidney medulla). The optimized approach for on-tissue derivatization and subsequent quantification creates a powerful tool to better understand the relationship between dox exposure (at clinically relevant concentrations) and its biological detrimental effects in various tissues. Overall, this work is a showcase of the added value of MALDI-MSI for pharmaceutical studies to better understand heterogeneity in drug exposure between and within organs.


Subject(s)
Kidney , Neoplasms , Animals , Mice , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Diagnostic Imaging , Doxorubicin/pharmacology , Lasers
7.
Commun Biol ; 6(1): 1137, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945735

ABSTRACT

The mechanisms by which physical activity affects cardiovascular function and physiology are complex and multifactorial. In the present study, cardiac output during rest or acute physical activity was simulated in isolated aortic segments of healthy C57BL/6J wild-type mice. This was performed using the Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC) by applying cyclic stretch of different amplitude, duration and frequency in well-controlled and manageable experimental conditions. Our data show that vascular smooth muscle cells (VSMCs) of the aorta have the intrinsic ability to "de-stiffen" or "relax" after periods of high cyclic stretch and to "re-stiffen" slowly thereafter upon return to normal distension pressures. Thereby, certain conditions have to be fulfilled: 1) VSMC contraction and repetitive stretching (loading/unloading cycles) are a prerequisite to induce post-exercise de-stiffening; 2) one bout of high cyclic stretch is enough to induce de- and re-stiffening. Aortic de-stiffening was highly dependent on cyclic stretch amplitude and on the manner and timing of contraction with probable involvement of focal adhesion phosphorylation/activation. Results of this study may have implications for the therapeutic potential of regular and acute physical activity and its role in the prevention and/or treatment of cardiovascular disease.


Subject(s)
Aorta , Myocytes, Smooth Muscle , Mice , Animals , Blood Pressure , Mice, Inbred C57BL , Pressure
8.
PLoS One ; 18(11): e0294848, 2023.
Article in English | MEDLINE | ID: mdl-38015959

ABSTRACT

Apart from cardiotoxicity, the chemotherapeutic agent doxorubicin (DOX) provokes acute and long-term vascular toxicity. Dexrazoxane (DEXRA) is an effective drug for treatment of DOX-induced cardiotoxicity, yet it remains currently unknown whether DEXRA prevents vascular toxicity associated with DOX. Accordingly, the present study aimed to evaluate the protective potential of DEXRA against DOX-related vascular toxicity in a previously-established in vivo and ex vivo model of vascular dysfunction induced by 16 hour (h) DOX exposure. Vascular function was evaluated in the thoracic aorta in organ baths, 16h after administration of DOX (4 mg/kg) or DOX with DEXRA (40 mg/kg) to male C57BL6/J mice. In parallel, vascular reactivity was evaluated after ex vivo incubation (16h) of murine aortic segments with DOX (1 µM) or DOX with DEXRA (10 µM). In both in vivo and ex vivo experiments, DOX impaired acetylcholine-stimulated endothelium-dependent vasodilation. In the ex vivo setting, DOX additionally attenuated phenylephrine-elicited vascular smooth muscle cell (VSMC) contraction. Importantly, DEXRA failed to prevent DOX-induced endothelial dysfunction and hypocontraction. Furthermore, RT-qPCR and Western blotting showed that DOX decreased the protein levels of topoisomerase-IIß (TOP-IIß), a key target of DEXRA, in the heart, but not in the aorta. Additionally, the effect of N-acetylcysteine (NAC, 10 µM), a reactive oxygen species (ROS) scavenger, was evaluated ex vivo. NAC did not prevent DOX-induced impairment of acetylcholine-stimulated vasodilation. In conclusion, our results show that DEXRA fails to prevent vascular toxicity resulting from 16h DOX treatment. This may relate to DOX provoking vascular toxicity in a ROS- and TOP-IIß-independent way, at least in the evaluated acute setting. However, it is important to mention that these findings only apply to the acute (16h) treatment period, and further research is warranted to delineate the therapeutic potential of DEXRA against vascular toxicity associated with longer-term repetitive DOX dosing.


Subject(s)
Dexrazoxane , Mice , Animals , Male , Dexrazoxane/pharmacology , Dexrazoxane/metabolism , Reactive Oxygen Species/metabolism , Cardiotoxicity/drug therapy , Cardiotoxicity/prevention & control , Cardiotoxicity/metabolism , Acetylcholine/metabolism , Doxorubicin/toxicity , Doxorubicin/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Antibiotics, Antineoplastic/pharmacology
9.
Burns ; 49(7): 1574-1584, 2023 11.
Article in English | MEDLINE | ID: mdl-37833149

ABSTRACT

Following burns a sustained catabolic stress response is activated, resulting in skeletal muscle wasting. A better understanding of the underlying mechanisms of postburn skeletal muscle wasting is essential for the development of preventive and/or therapeutic strategies. Six weeks old female rats underwent a sham, 10% or 40% total body surface area scald burn. Ten days post-injury, severely burned animals gained significantly less weight compared to sham treated and minor burned animals, reflected in a significantly lower ratio of muscle to total body weight for Soleus (SOL) and Extensor Digitorum Longus (EDL) in the severely burned group. Postburn, total fiber number was significantly lower in EDL, while in SOL the amount of type1 fibers significantly increased and type2 fibers significantly decreased. No signs of mitochondrial dysfunction (COX/SDH) or apoptosis (caspase-3) were found. In SOL and EDL, eEF2 and pAKT expression was significantly lower after severe burn. MURF1,2,3 and Atrogin-1 was significantly higher in SOL, whilst in EDL MURF1,2,3 was significantly lower postburn. In both muscles, FOXO3A was significantly lower postburn. This study identified postburn changes in muscle anthropomorphology and proteins involved in pathways regulating protein synthesis and breakdown, with more pronounced catabolic effects in SOL.


Subject(s)
Burns , Rats , Female , Animals , Rats, Sprague-Dawley , Burns/pathology , Muscular Atrophy/etiology , Muscle, Skeletal , Apoptosis
10.
Front Physiol ; 14: 1218924, 2023.
Article in English | MEDLINE | ID: mdl-37637147

ABSTRACT

Due to its viscoelastic properties, the aorta aids in dampening blood pressure pulsatility. At the level of resistance-arteries, the pulsatile flow will be transformed into a continuous flow to allow for optimal perfusion of end organs such as the kidneys and the brain. In this study, we investigated the ex vivo viscoelastic properties of different regions of the aorta of healthy C57Bl6/J adult mice as well as the interplay between (altered) cyclic stretch and viscoelasticity. We demonstrated that the viscoelastic parameters increase along the distal aorta and that the effect of altered cyclic stretch is region dependent. Increased cyclic stretch, either by increased pulse pressure or pulse frequency, resulted in decreased aortic viscoelasticity. Furthermore, we identified that the vascular smooth muscle cell (VSMC) is an important modulator of viscoelasticity, as we have shown that VSMC contraction increases viscoelastic parameters by, in part, increasing elastin fiber tortuosity. Interestingly, an acute increase in stretch amplitude reverted the changes in viscoelastic properties induced by VSMC contraction, such as a decreasing contraction-induced elastin fiber tortuosity. Finally, the effects of altered cyclic stretch and VSMC contraction on viscoelasticity were more pronounced in the abdominal infrarenal aorta, compared to both the thoracic ascending and descending aorta, and were attributed to the activity and stability of VSMC focal adhesion. Our results indicate that cyclic stretch is a modulator of aortic viscoelasticity, acting on VSMC focal adhesion. Conditions of (acute) changes in cyclic stretch amplitude and/or frequency, such as physical exercise or hypertension, can alter the viscoelastic properties of the aorta.

11.
Cardiovasc Res ; 119(15): 2579-2590, 2023 11 25.
Article in English | MEDLINE | ID: mdl-37625456

ABSTRACT

AIMS: Apart from cardiotoxicity, the chemotherapeutic doxorubicin (DOX) induces vascular toxicity, represented by arterial stiffness and endothelial dysfunction. Both parameters are of interest for cardiovascular risk stratification as they are independent predictors of future cardiovascular events in the general population. However, the time course of DOX-induced cardiovascular toxicity remains unclear. Moreover, current biomarkers for cardiovascular toxicity prove insufficient. Here, we longitudinally evaluated functional and molecular markers of DOX-induced cardiovascular toxicity in a murine model. Molecular markers were further validated in patient plasma. METHODS AND RESULTS: DOX (4 mg/kg) or saline (vehicle) was administered intra-peritoneally to young, male mice weekly for 6 weeks. In vivo cardiovascular function and ex vivo arterial stiffness and vascular reactivity were evaluated at baseline, during DOX therapy (Weeks 2 and 4) and after therapy cessation (Weeks 6, 9, and 15). Left ventricular ejection fraction (LVEF) declined from Week 4 in the DOX group. DOX increased arterial stiffness in vivo and ex vivo at Week 2, which reverted thereafter. Importantly, DOX-induced arterial stiffness preceded reduced LVEF. Further, DOX impaired endothelium-dependent vasodilation at Weeks 2 and 6, which recovered at Weeks 9 and 15. Conversely, contraction with phenylephrine was consistently higher in the DOX-treated group. Furthermore, proteomic analysis on aortic tissue identified increased thrombospondin-1 (THBS1) and alpha-1-antichymotrypsin (SERPINA3) at Weeks 2 and 6. Up-regulated THBS1 and SERPINA3 persisted during follow-up. Finally, THBS1 and SERPINA3 were quantified in plasma of patients. Cancer survivors with anthracycline-induced cardiotoxicity (AICT; LVEF < 50%) showed elevated THBS1 and SERPINA3 levels compared with age-matched control patients (LVEF ≥ 60%). CONCLUSIONS: DOX increased arterial stiffness and impaired endothelial function, which both preceded reduced LVEF. Vascular dysfunction restored after DOX therapy cessation, whereas cardiac dysfunction persisted. Further, we identified SERPINA3 and THBS1 as promising biomarkers of DOX-induced cardiovascular toxicity, which were confirmed in AICT patients.


Subject(s)
Cardiotoxicity , Proteomics , Humans , Male , Mice , Animals , Cardiotoxicity/drug therapy , Stroke Volume , Ventricular Function, Left , Doxorubicin/toxicity , Biomarkers
12.
Vascul Pharmacol ; 152: 107212, 2023 10.
Article in English | MEDLINE | ID: mdl-37619798

ABSTRACT

Arterial stiffness is a hallmark of vascular ageing and results in increased blood flow pulsatility to the periphery, damaging end-organs such as the heart, kidneys and brain. Treating or "reversing" arterial stiffness has therefore become a central target in the field of vascular ageing. SGLT2 inhibitors, initially developed in the context of type 2 diabetes mellitus, have become a cornerstone of heart failure treatment. Additionally, effects on the vasculature have been reported. Here, we demonstrate that treatment with the SGLT2 inhibitor empagliflozin (7 weeks, 15 mg/kg/day) decreased ageing-induced arterial stiffness of the aorta in old mice with normal blood glucose levels. However, no universal mechanism was identified. While empagliflozin reduced the ageing-associated increase in collagen type I in the medial layer of the abdominal infrarenal aorta and decreased medial TGF-ß deposition, this was not observed in the thoracic descending aorta. Moreover, empagliflozin was not able to prevent elastin fragmentation. In conclusion, empagliflozin decreased arterial stiffness in aged mice, indicating that SGLT2 inhibition could be a valuable strategy in mitigating vascular ageing. Further research is warranted to unravel the underlying, possibly region-specific, mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Animals , Mice , Diabetes Mellitus, Type 2/drug therapy , Arteries , Heart , Aging , Aorta, Abdominal , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
13.
J Pharmacol Toxicol Methods ; 123: 107296, 2023.
Article in English | MEDLINE | ID: mdl-37482323

ABSTRACT

INTRODUCTION: Pharmacokinetic/pharmacodynamic modelling has emerged as a valuable technique for understanding drug exposure and response relationships in drug development. Pharmacokinetic data are often obtained by taking multiple blood samples, which may disturb physiological parameters and complicate study designs. Wearable automatic blood sampling systems can improve this limitation by collecting dried blood samples at programmable time points without disrupting cardiovascular parameters. It is the objective of this study to evaluate the bioanalysis of DBS in comparison to conventional blood sampling techniques and to optimize the recovery of various compounds spiked into canine blood dried on filter paper tape. METHODS: Incubated blood samples from Beagle dogs were spiked with 16 different compounds and half of the whole blood sample was centrifuged to obtain plasma. After the dried blood sample drops were dried, liquid chromatography-mass spectrometry methods were used to analyze the samples. The study explored different anticoagulants, sample preparation methods and technical approaches to best determine the compound concentrations in dried blood samples. RESULTS: With the two anticoagulants tested and using the optimized sample preparation methods and technical approaches we employed, the bioanalysis of dried blood samples can provide equivalent results to conventional blood sampling techniques. DISCUSSION: Automated blood sampling systems have the potential to provide increased numbers of blood samples, providing substantially more Pharmacokinetic data within safety pharmacology studies without disrupting physiological parameters. They can provide a viable alternative to traditional methods of obtaining blood for various other types of studies or analyses.


Subject(s)
Blood Specimen Collection , Tandem Mass Spectrometry , Animals , Dogs , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Blood Specimen Collection/methods , Plasma , Anticoagulants
14.
Front Oncol ; 13: 1158124, 2023.
Article in English | MEDLINE | ID: mdl-37197431

ABSTRACT

Unprecedented immunization campaigns have been rolled out worldwide in an attempt to contain the ongoing COVID-19 pandemic. Multiple vaccines were brought to the market, among two utilizing novel messenger ribonucleic acid technology. Despite their undisputed success in decreasing COVID-19-associated hospitalizations and mortality, various adverse events have been reported. The emergence of malignant lymphoma is one of such rare adverse events that has raised concern, although an understanding of the mechanisms potentially involved remains lacking. Herein, we present the first case of B-cell lymphoblastic lymphoma following intravenous high-dose mRNA COVID-19 vaccination (BNT162b2) in a BALB/c mouse. Two days following booster vaccination (i.e., 16 days after prime), at only 14 weeks of age, our animal suffered spontaneous death with marked organomegaly and diffuse malignant infiltration of multiple extranodal organs (heart, lung, liver, kidney, spleen) by lymphoid neoplasm. Immunohistochemical examination revealed organ sections positive for CD19, terminal deoxynucleotidyl transferase, and c-MYC, compatible with a B-cell lymphoblastic lymphoma immunophenotype. Our murine case adds to previous clinical reports on malignant lymphoma development following novel mRNA COVID-19 vaccination, although a demonstration of direct causality remains difficult. Extra vigilance is required, with conscientious reporting of similar cases and a further investigation of the mechanisms of action explaining the aforementioned association.

15.
Angiogenesis ; 26(4): 505-522, 2023 11.
Article in English | MEDLINE | ID: mdl-37120604

ABSTRACT

Intraplaque (IP) angiogenesis is a key feature of advanced atherosclerotic plaques. Because IP vessels are fragile and leaky, erythrocytes are released and phagocytosed by macrophages (erythrophagocytosis), which leads to high intracellular iron content, lipid peroxidation and cell death. In vitro experiments showed that erythrophagocytosis by macrophages induced non-canonical ferroptosis, an emerging type of regulated necrosis that may contribute to plaque destabilization. Erythrophagocytosis-induced ferroptosis was accompanied by increased expression of heme-oxygenase 1 and ferritin, and could be blocked by co-treatment with third generation ferroptosis inhibitor UAMC-3203. Both heme-oxygenase 1 and ferritin were also expressed in erythrocyte-rich regions of carotid plaques from ApoE-/- Fbn1C1039G+/- mice, a model of advanced atherosclerosis with IP angiogenesis. The effect of UAMC-3203 (12.35 mg/kg/day) on atherosclerosis was evaluated in ApoE-/- Fbn1C1039G+/- mice fed a western-type diet (WD) for 12 weeks (n = 13 mice/group) or 20 weeks (n = 16-21 mice/group) to distinguish between plaques without and with established IP angiogenesis, respectively. A significant decrease in carotid plaque thickness was observed after 20 weeks WD (87 ± 19 µm vs. 166 ± 20 µm, p = 0.006), particularly in plaques with confirmed IP angiogenesis or hemorrhage (108 ± 35 µm vs. 322 ± 40 µm, p = 0.004). This effect was accompanied by decreased IP heme-oxygenase 1 and ferritin expression. UAMC-3203 did not affect carotid plaques after 12 weeks WD or plaques in the aorta, which typically do not develop IP angiogenesis. Altogether, erythrophagocytosis-induced ferroptosis during IP angiogenesis leads to larger atherosclerotic plaques, an effect that can be prevented by ferroptosis inhibitor UAMC-3203.


Subject(s)
Atherosclerosis , Ferroptosis , Plaque, Atherosclerotic , Mice , Animals , Fibrillin-1/metabolism , Apolipoproteins E/genetics , Ferritins , Oxygenases/metabolism , Heme/metabolism
16.
J Neurotrauma ; 40(13-14): 1317-1338, 2023 07.
Article in English | MEDLINE | ID: mdl-36974359

ABSTRACT

The prediction of functional outcome after mild traumatic brain injury (mTBI) is challenging. Conventional magnetic resonance imaging (MRI) does not do a good job of explaining the variance in outcome, as many patients with incomplete recovery will have normal-appearing clinical neuroimaging. More advanced quantitative techniques such as diffusion MRI (dMRI), can detect microstructural changes not otherwise visible, and so may offer a way to improve outcome prediction. In this study, we explore the potential of linear support vector classifiers (linearSVCs) to identify dMRI biomarkers that can predict recovery after mTBI. Simultaneously, the harmonization of fractional anisotropy (FA) and mean diffusivity (MD) via ComBat was evaluated and compared for the classification performances of the linearSVCs. We included dMRI scans of 179 mTBI patients and 85 controls from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI), a multi-center prospective cohort study, up to 21 days post-injury. Patients were dichotomized according to their Extended Glasgow Outcome Scale (GOSE) scores at 6 months into complete (n = 92; GOSE = 8) and incomplete (n = 87; GOSE <8) recovery. FA and MD maps were registered to a common space and harmonized via the ComBat algorithm. LinearSVCs were applied to distinguish: (1) mTBI patients from controls and (2) mTBI patients with complete from those with incomplete recovery. The linearSVCs were trained on (1) age and sex only, (2) non-harmonized, (3) two-category-harmonized ComBat, and (4) three-category-harmonized ComBat FA and MD images combined with age and sex. White matter FA and MD voxels and regions of interest (ROIs) within the John Hopkins University (JHU) atlas were examined. Recursive feature elimination was used to identify the 10% most discriminative voxels or the 10 most discriminative ROIs for each implementation. mTBI patients displayed significantly higher MD and lower FA values than controls for the discriminative voxels and ROIs. For the analysis between mTBI patients and controls, the three-category-harmonized ComBat FA and MD voxel-wise linearSVC provided significantly higher classification scores (81.4% accuracy, 93.3% sensitivity, 80.3% F1-score, and 0.88 area under the curve [AUC], p < 0.05) compared with the classification based on age and sex only and the ROI approaches (accuracies: 59.8% and 64.8%, respectively). Similar to the analysis between mTBI patients and controls, the three-category-harmonized ComBat FA and MD maps voxelwise approach yields statistically significant prediction scores between mTBI patients with complete and those with incomplete recovery (71.8% specificity, 66.2% F1-score and 0.71 AUC, p < 0.05), which provided a modest increase in the classification score (accuracy: 66.4%) compared with the classification based on age and sex only and ROI-wise approaches (accuracy: 61.4% and 64.7%, respectively). This study showed that ComBat harmonized FA and MD may provide additional information for diagnosis and prognosis of mTBI in a multi-modal machine learning approach. These findings demonstrate that dMRI may assist in the early detection of patients at risk of incomplete recovery from mTBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Humans , Brain Concussion/diagnosis , Diffusion Tensor Imaging/methods , Support Vector Machine , Prospective Studies , Prognosis , Anisotropy , Brain/pathology
17.
J Pharmacol Toxicol Methods ; 121: 107263, 2023.
Article in English | MEDLINE | ID: mdl-36965603

ABSTRACT

INTRODUCTION: A safety pharmacology study detects and evaluates potential side effects of a new drug on physiological function at therapeutic levels and above and, in most cases, prior to the initiation of clinical trials. The aim of this study was to investigate the effects of environmental and biological factors on resting heart rate (HR), a representative cardiac parameter in cardiovascular safety pharmacology. METHODS: Over twenty years, 143 dogs (Beagles, Labradors and mongrels) received implanted telemetry transmitters to measure aortic pressure (AP), left ventricular pressure (LVP), Electrocardiogram (ECG) and body temperature. Throughout the 7-h period of data collection, data were continuously recorded without drug treatment and included the range of HRs resulting from spontaneous physiological changes. Statistics and visualizations were calculated using R and Spotfire. RESULTS: Beagles had a higher HR than the mongrels, while Labradors had a lower HR than mongrels. Labradors were found to have a sex-based difference in HR, with females having a higher HR. A higher HR was observed in young animals of all breeds when they were in contact with humans. The cage system affected the HR of Labradors and mongrels more than Beagles. Larger dogs (e.g. Labrador) have a lower HR than smaller dogs (Beagles). Animals that are younger were found to have more HR variability and have a higher HR than older animals. In addition, older animals reacted less to the application period and human interaction than younger animals. The HR response of animals inside a cage system may depend on the cage system in which they were bred. A familiar cage system typically has less impact on HR. DISCUSSION: This retrospective data base evaluation has demonstrated the impact of environmental and biological factors on cardiovascular parameters in the context of performing safety pharmacology studies. Breed, sex, age and the type of cage system used affected, at least in some cases, the HR and its variability. They should therefore be carefully considered when designing safety pharmacology studies to have the highest possible test sensitivity.


Subject(s)
Biological Factors , Cardiovascular System , Heart Rate , Animals , Dogs , Biological Factors/pharmacology , Electrocardiography/methods , Retrospective Studies , Telemetry/methods
18.
J Cachexia Sarcopenia Muscle ; 14(2): 758-770, 2023 04.
Article in English | MEDLINE | ID: mdl-36760077

ABSTRACT

After a severe burn injury, a systemic stress response activates metabolic and inflammatory derangements that, among other, leads to muscle mass loss (muscle wasting). These negative effects on skeletal muscle continue for several months or years and are aggravated by short-term and long-term disuse. The dynamic balance between muscle protein synthesis and muscle protein breakdown (proteolysis) is regulated by complex signalling pathways that leads to an overall negative protein balance in skeletal muscle after a burn injury. Research concerning these molecular mechanisms is still scarce and inconclusive, understanding of which, if any, molecular mechanisms contribute to muscle wasting is of fundamental importance in designing of therapeutic interventions for burn patients as well. This review not only summarizes our present knowledge of the molecular mechanisms that underpin muscle protein balance but also summarizes the effects of exercise on muscle wasting post-burn as promising strategy to counteract the detrimental effects on skeletal muscle. Future research focusing on the pathways causing post-burn muscle wasting and the different effects of exercise on them is needed to confirm this hypothesis and to lay the foundation of therapeutic strategies.


Subject(s)
Muscle, Skeletal , Muscular Atrophy , Humans , Muscular Atrophy/etiology , Muscular Atrophy/therapy , Muscular Atrophy/metabolism , Muscle, Skeletal/pathology , Proteolysis , Muscle Proteins/metabolism , Exercise
19.
Nephrol Dial Transplant ; 38(5): 1127-1138, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36316014

ABSTRACT

BACKGROUND: Cardiovascular disease remains the leading cause of death in chronic kidney disease (CKD) patients, especially in those undergoing dialysis and kidney transplant surgery. CKD patients are at high risk of developing arterial media calcifications (AMC) and arterial stiffness. We hypothesized that investigation of disease progression at an early stage could provide novel insights in understanding AMC etiology. METHODS: An adenine diet was administered to male Wistar rats to induce AMC. Rats were sacrificed after 2, 4 and 8 weeks. AMC was measured by assessment of aortic calcium and visualized using histology. Arterial stiffness was measured in vivo by ultrasound and ex vivo by applying cyclic stretch of physiological magnitude on isolated arterial segments, allowing us to generate the corresponding pressure-diameter loops. Further, ex vivo arterial reactivity was assessed in organ baths at 2 and 4 weeks to investigate early alterations in biomechanics/cellular functionality. RESULTS: CKD rats showed a time-dependent increase in aortic calcium which was confirmed on histology. Accordingly, ex vivo arterial stiffness progressively worsened. Pressure-diameter loops showed a gradual loss of arterial compliance in CKD rats. Additionally, viscoelastic properties of isolated arterial segments were altered in CKD rats. Furthermore, after 2 and 4 weeks of adenine treatment, a progressive loss in basal, nitric oxide (NO) levels was observed, which was linked to an increased vessel tonus and translates into an increasing viscous modulus. CONCLUSIONS: Our observations indicate that AMC-related vascular alterations develop early after CKD induction prior to media calcifications being present. Preventive action, related to restoration of NO bioavailability, might combat AMC development.


Subject(s)
Arteriosclerosis , Calcinosis , Renal Insufficiency, Chronic , Vascular Calcification , Vascular Stiffness , Male , Rats , Animals , Calcium , Rats, Wistar , Renal Dialysis , Renal Insufficiency, Chronic/complications , Vascular Stiffness/physiology , Disease Progression , Adenine , Vascular Calcification/etiology , Vascular Calcification/prevention & control
20.
Cancers (Basel) ; 14(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36497269

ABSTRACT

Glioblastoma is a devastating grade IV glioma with poor prognosis. Identification of predictive molecular biomarkers of disease progression would substantially contribute to better disease management. In the current study, we performed a meta-analysis of different RNA-seq datasets to identify differentially expressed protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs). This meta-analysis aimed to improve power and reproducibility of the individual studies while identifying overlapping disease-relevant pathways. We supplemented the meta-analysis with small RNA-seq on glioblastoma tissue samples to provide an overall transcriptomic view of glioblastoma. Co-expression correlation of filtered differentially expressed PCGs and lncRNAs identified a functionally relevant sub-cluster containing DANCR and SNHG6, with two novel lncRNAs and two novel PCGs. Small RNA-seq of glioblastoma tissues identified five differentially expressed microRNAs of which three interacted with the functionally relevant sub-cluster. Pathway analysis of this sub-cluster identified several glioblastoma-linked pathways, which were also previously associated with the novel cell death pathway, ferroptosis. In conclusion, the current meta-analysis strengthens evidence of an overarching involvement of ferroptosis in glioblastoma pathogenesis and also suggests some candidates for further analyses.

SELECTION OF CITATIONS
SEARCH DETAIL
...