Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 58(8): 2241-2245, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30589173

ABSTRACT

Owing to the strong nonpolar bonds involved, selective C-H functionalization of methane and ethane to esters remains a challenge for molecular homogeneous chemistry. We report that the computationally predicted main-group p-block SbV (TFA)5 complex selectively functionalizes the C-H bonds of methane and ethane to the corresponding mono and/or diol trifluoroacetate esters at 110-180 °C with yields for ethane of up to 60 % with over 90 % selectivity. Experimental and computational studies support a unique mechanism that involves SbV -mediated C-H activation followed by functionalization of a SbV -alkyl intermediate.

2.
Chem Rev ; 117(13): 8521-8573, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28459540

ABSTRACT

One of the remaining "grand challenges" in chemistry is the development of a next generation, less expensive, cleaner process that can allow the vast reserves of methane from natural gas to augment or replace oil as the source of fuels and chemicals. Homogeneous (gas/liquid) systems that convert methane to functionalized products with emphasis on reports after 1995 are reviewed. Gas/solid, bioinorganic, biological, and reaction systems that do not specifically involve methane functionalization are excluded. The various reports are grouped under the main element involved in the direct reactions with methane. Central to the review is classification of the various reports into 12 categories based on both practical considerations and the mechanisms of the elementary reactions with methane. Practical considerations are based on whether or not the system reported can directly or indirectly utilize O2 as the only net coreactant based only on thermodynamic potentials. Mechanistic classifications are based on whether the elementary reactions with methane proceed by chain or nonchain reactions and with stoichiometric reagents or catalytic species. The nonchain reactions are further classified as CH activation (CHA) or CH oxidation (CHO). The bases for these various classifications are defined. In particular, CHA reactions are defined as elementary reactions with methane that result in a discrete methyl intermediate where the formal oxidation state (FOS) on the carbon remains unchanged at -IV relative to that in methane. In contrast, CHO reactions are defined as elementary reactions with methane where the carbon atom of the product is oxidized and has a FOS less negative than -IV. This review reveals that the bulk of the work in the field is relatively evenly distributed across most of the various areas classified. However, a few areas are only marginally examined, or not examined at all. This review also shows that, while significant scientific progress has been made, greater advances, particularly in developing systems that can utilize O2, will be required to develop a practical process that can replace the current energy and capital intensive natural gas conversion process. We believe that this classification scheme will provide the reader with a rapid way to identify systems of interest while providing a deeper appreciation and understanding, both practical and fundamental, of the extensive literature on methane functionalization. The hope is that this could accelerate progress toward meeting this "grand challenge."

3.
Angew Chem Int Ed Engl ; 53(39): 10490-4, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25131994

ABSTRACT

Direct partial oxidation of methane, ethane, and propane to their respective trifluoroacetate esters is achieved by a homogeneous hypervalent iodine(III) complex in non-superacidic (trifluoroacetic acid) solvent. The reaction is highly selective for ester formation (>99%). In the case of ethane, greater than 0.5 M EtTFA can be achieved. Preliminary kinetic analysis and density functional calculations support a nonradical electrophilic CH activation and iodine alkyl functionalization mechanism.

4.
Science ; 343(6176): 1232-7, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24626925

ABSTRACT

Much of the recent research on homogeneous alkane oxidation has focused on the use of transition metal catalysts. Here, we report that the electrophilic main-group cations thallium(III) and lead(IV) stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent. Esters of methanol, ethanol, ethylene glycol, isopropanol, and propylene glycol are obtained with greater than 95% selectivity in concentrations up to 1.48 molar within 3 hours at 180°C. Experiment and theory support a mechanism involving electrophilic carbon-hydrogen bond activation to generate metal alkyl intermediates. We posit that the comparatively high reactivity of these d(10) main-group cations relative to transition metals stems from facile alkane coordination at vacant sites, enabled by the overall lability of the ligand sphere and the absence of ligand field stabilization energies in systems with filled d-orbitals.

SELECTION OF CITATIONS
SEARCH DETAIL
...