Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 358(6360)2017 10 13.
Article in English | MEDLINE | ID: mdl-29026015

ABSTRACT

Spaceborne measurements by NASA's Orbiting Carbon Observatory-2 (OCO-2) at the kilometer scale reveal distinct structures of atmospheric carbon dioxide (CO2) caused by known anthropogenic and natural point sources. OCO-2 transects across the Los Angeles megacity (USA) show that anthropogenic CO2 enhancements peak over the urban core and decrease through suburban areas to rural background values more than ~100 kilometers away, varying seasonally from ~4.4 to 6.1 parts per million. A transect passing directly downwind of the persistent isolated natural CO2 plume from Yasur volcano (Vanuatu) shows a narrow filament of enhanced CO2 values (~3.4 parts per million), consistent with a CO2 point source emitting 41.6 kilotons per day. These examples highlight the potential of the OCO-2 sensor, with its unprecedented resolution and sensitivity, to detect localized natural and anthropogenic CO2 sources.

2.
Appl Opt ; 41(33): 6968-79, 2002 Nov 20.
Article in English | MEDLINE | ID: mdl-12463241

ABSTRACT

Version 3 of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment data set for some 30 trace and minor gas profiles is available. From the IR solar-absorption spectra measured during four Space Shuttle missions (in 1985, 1992, 1993, and 1994), profiles from more than 350 occultations were retrieved from the upper troposphere to the lower mesosphere. Previous results were unreliable for tropospheric retrievals, but with a new global-fitting algorithm profiles are reliably returned down to altitudes as low as 6.5 km (clouds permitting) and include notably improved retrievals of H2O, CO, and other species. Results for stratospheric water are more consistent across the ATMOS spectral filters and do not indicate a net consumption of H2 in the upper stratosphere. A new sulfuric-acid aerosol product is described. An overview of ATMOS Version 3 processing is presented with a discussion of estimated uncertainties. Differences between these Version 3 and previously reported Version 2 ATMOS results are discussed. Retrievals are available at http://atmos.jpl.nasa.gov/atmos.

3.
Appl Opt ; 41(15): 2768-80, 2002 May 20.
Article in English | MEDLINE | ID: mdl-12027163

ABSTRACT

High-resolution infrared nongas absorption spectra derived from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are analyzed for evidence of the presence of cirrus clouds. Several nonspherical ice extinction models based on realistic size distributions and crystal habits along with a stratospheric sulfate aerosol model are fit to the spectra, and comparisons are made with different model combinations. Nonspherical ice models often fit observed transmission spectra better than a spherical Mie ice model, and some discrimination among nonspherical models is noted. The ATMOS lines of sight for eight occultations are superimposed on coincident geostationary satellite infrared imagery, and brightness temperatures along the lines of sight are compared with retrieved vertical temperature profiles. With these comparisons, studies of two cases of clear sky, three cases of opaque cirrus, and three cases of patchy cirrus are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...