Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 44(24): 9571-7, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21082828

ABSTRACT

This investigation applied novel techniques for characterizing and fractionating nanosilver particles and aggregates and relating these measurements to toxicological endpoints. The acute toxicity of eight nanosilver suspensions of varying primary particle sizes (10-80 nm) and coatings (citrate, polyvinylpyrrolidone, EDTA, proprietary) was assessed using three aquatic test organisms (Daphnia magna, Pimephales promelas, Pseudokirchneriella subcapitata). When 48-h lethal median concentrations (LC50) were expressed as total silver, both D. magna and P. promelas were significantly more sensitive to ionic silver (Ag(+)) as AgNO(3) (mean LC50 = 1.2 and 6.3 µg/L, respectively) relative to a wide range in LC50 values determined for the nanosilver suspensions (2 -126 µg/L). However, when LC50 values for nanosilver suspensions were expressed as fractionated nanosilver (Ag(+) and/or <4 nm particles), determined by ultracentrifugation of particles and confirmed field-flow-fractograms, the LC50 values (0.3-5.6 µg/L) were comparable to the values obtained for ionic Ag(+) as AgNO(3). These results suggest that dissolved Ag(+) plays a critical role in acute toxicity and underscores the importance of characterizing dissolved fractions in nanometal suspensions.


Subject(s)
Aquatic Organisms/drug effects , Chemical Fractionation/methods , Metal Nanoparticles/toxicity , Silver/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chlorophyta/drug effects , Cyprinidae , Daphnia/drug effects , Metal Nanoparticles/ultrastructure , Particle Size , Toxicity Tests, Acute
2.
Environ Toxicol Chem ; 28(9): 1930-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19388791

ABSTRACT

Knowledge gaps in nanomaterial fate and toxicity currently limit the ability of risk assessments to characterize the environmental implications of nanomaterials. This problem is further complicated by the lack of standardized characterization and preparation methodologies for researchers to gain the needed information to assist risk assessors. In the present study, data were generated to determine if multiwalled nanotube (MWNT) fate and toxicity are altered by engineered surface modifications or by different dispersal methods. While dissolved organic matter was a good dispersing agent of MWNTs in water, the humic acid fraction was a more effective dispersant than the fulvic acid fraction. When stabilized in organic matter, the functional group attached to the MWNT controlled its toxicity. Underivatized MWNTs induced relatively moderate toxicity to Ceriodaphnia dubia after 96 h (25 +/- 19% survival at 26 mg/L), while hydrophilic groups (hydroxyl, carboxyl) reduced this toxicity (93 +/- 12% survival at 48 mg/L). However, other functional groups (alkyl, amine) increased toxicity (0 +/- 0% survival at <15 mg/L). In dispersal method studies, sonication of MWNTs increased fragmentation relative to magnetic stirring. The sonication treatment of MWNTs also slightly reduced the mortality of C. dubia in the water column but increased toxicity in the sediment to Leptocheirus plumulosus and Hyalella azteca. Findings in the present study indicate that nanotubes engineered for specific applications need to be managed independently and that laboratory methods to disperse and test nanotubes in bioassays need to be standardized to obtain repeatable results for comparison of materials.


Subject(s)
Biological Assay/methods , Nanotubes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Daphnia/drug effects , Geologic Sediments/analysis
3.
Environ Toxicol Chem ; 27(9): 1932-41, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19086318

ABSTRACT

Carbon nanotubes (NTs) may be among the most useful engineered nanomaterials for structural applications but could be difficult to study in ecotoxicological evaluations using existing tools relative to nanomaterials with a lower aspect ratio. Whereas the hydrophobicity and van der Waals interactions of NTs may suggest aggregation and sedimentation in aquatic systems, consideration regarding how engineered surface modifications influence their environmental fate and toxicology is needed. Surface modifications (e.g., functional groups and coatings) are intended to create conditions to make NTs dispersible in aqueous suspension, as required for some applications. In the present study, column stability and settling experiments indicated that raw, multiwalled NTs (MWNTs) settled more rapidly than carbon black and activated carbon particles, suggesting sediment as the ultimate repository. The presence of functional groups, however, slowed the settling of MWNTs (increasing order of stability: hydroxyl > carboxyl > raw), especially in combination with natural organic matter (NOM). Stabilized MWNTs in high concentrations of NOM provided relevance for water transport and toxicity studies. Aqueous exposures to raw MWNTs decreased Ceriodaphnia dubia viability, but such effects were not observed during exposure to functionalized MWNTs (> 80 mg/L). Sediment exposures of the amphipods Leptocheirus plumulosus and Hyalella azteca to different sizes of sediment-borne carbon particles at high concentration indicated mortality increased as particle size decreased, although raw MWNTs induced lower mortality (median lethal concentration [LC50], 50 to >264 g/kg) than carbon black (LC50, 18-40 g/kg) and activated carbon (LC50, 12-29 g/kg). Our findings stress that it may be inappropriate to classify all NTs into one category in terms of their environmental regulation.


Subject(s)
Nanotubes/chemistry , Nanotubes/toxicity , Water Pollutants/chemistry , Water Pollutants/toxicity , Amphipoda , Animals , Biological Assay , Biological Availability , Daphnia , Data Interpretation, Statistical , Image Processing, Computer-Assisted , Microscopy, Electron, Transmission , Particle Size , Surface Properties , Suspensions , Ultrasonics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...