Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 12(43): 14484-14493, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34880999

ABSTRACT

Understanding the catalyst compositional and structural features that control selectivity is of uttermost importance to target desired products in chemical reactions. In this joint experimental-computational work, we leverage tailored Cu/ZnO precatalysts as a material platform to identify the intrinsic features of methane-producing and ethanol-producing CuZn catalysts in the electrochemical CO2 reduction reaction (CO2RR). Specifically, we find that Cu@ZnO nanocrystals, where a central Cu domain is decorated with ZnO domains, and ZnO@Cu nanocrystals, where a central ZnO domain is decorated with Cu domains, evolve into Cu@CuZn core@shell catalysts that are selective for methane (∼52%) and ethanol (∼39%), respectively. Operando X-ray absorption spectroscopy and various microscopy methods evidence that a higher degree of surface alloying along with a higher concentration of metallic Zn improve the ethanol selectivity. Density functional theory explains that the combination of electronic and tandem effects accounts for such selectivity. These findings mark a step ahead towards understanding structure-property relationships in bimetallic catalysts for the CO2RR and their rational tuning to increase selectivity towards target products, especially alcohols.

2.
Angew Chem Int Ed Engl ; 58(36): 12632-12639, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31287203

ABSTRACT

The tunable chemistry linked to the organic/inorganic components in colloidal nanocrystals (NCs) and metal-organic frameworks (MOFs) offers a rich playground to advance the fundamental understanding of materials design for various applications. Herein, we combine these two classes of materials by synthesizing NC/MOF hybrids comprising Ag NCs that are in intimate contact with Al-PMOF ([Al2 (OH)2 (TCPP)]) (tetrakis(4-carboxyphenyl)porphyrin (TCPP)), to form Ag@Al-PMOF. In our hybrids, the NCs are embedded in the MOF while still preserving electrical contact with a conductive substrate. This key feature allows the investigation of the Ag@Al-PMOFs as electrocatalysts for the CO2 reduction reaction (CO2 RR). We show that the pristine interface between the NCs and the MOFs accounts for electronic changes in the Ag, which suppress the hydrogen evolution reaction (HER) and promote the CO2 RR. We also demonstrate a minor contribution of mass-transfer effects imposed by the porous MOF layer under the chosen testing conditions. Furthermore, we find an increased morphological stability of the Ag NCs when combined with the Al-PMOF. The synthesis method is general and applicable to other metal NCs, thus revealing a new way to think about rationally tailored electrocatalytic materials to steer selectivity and improve stability.

3.
J Am Chem Soc ; 141(23): 9382-9390, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31129957

ABSTRACT

Two isostructural highly porous metal-organic frameworks, the well-known {Cu3(BTC)2} n (BTC = 1,3,5-benzenetricarboxylate), often appointed with the name HKUST-1, and {Zn3(BTC)2} n, have been investigated as models for the buildup of dielectric properties, differentiating the role of chemi- and physisorbed guest molecules and that of specific intraframework and framework-guest linkages. For this purpose, electron charge density analysis, impedance spectroscopy, density functional theory simulations, and atomic partitioning of the polarizabilities have been exploited. These analyses at different degrees of pores filling enabled one to observe structural and electronic changes induced by guest molecules, especially when chemisorbed. The electrostatic potential inside the pores allows one to describe the absorption mechanism and to estimate the polarization of guests induced by the framework. The dielectric constant shows very diverse frequency dependence and magnitude of real and imaginary components as a consequence of (I) capture of guest molecules in the pores during synthesis, (II) MOF activation, and (III) water absorption from the atmosphere after activation. Comparison with calculated static-dielectric constant and atomic polarizabilities of the material has allowed for evaluating building blocks' contribution to the overall property, paving the way for reverse crystal engineering of these species.

4.
Chem Sci ; 10(44): 10356-10365, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-32110324

ABSTRACT

Organic ligands are used in homogeneous catalysis to tune the metal center reactivity; in contrast, clean surfaces are usually preferred in heterogeneous catalysis. Herein, we demonstrate the potential of a molecular chemistry approach to develop efficient and selective heterogeneous catalysts in the electrochemical CO2 reduction reaction (CO2RR). We have tailor-made imidazolium ligands to promote the CO2RR at the surface of hybrid organic/inorganic electrode materials. We used silver nanocrystals for the inorganic component to obtain fundamental insights into the delicate tuning of the surface chemistry offered by these ligands. We reveal that modifying the electronic properties of the metal surface with anchor groups along with the solid/liquid interface with tail groups is crucial in obtaining selectivities (above 90% FE for CO), which are higher than the non-functionalized Ag nanocrystals. We also show that there is a unique dependency of the CO2RR selectivity on the length of the hydrocarbon tail of these ligands, offering a new way to tune the interactions between the metal surface with the electrolyte and reactants.

SELECTION OF CITATIONS
SEARCH DETAIL
...