Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Anal Appl Pyrolysis ; 162: 105447, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35068626

ABSTRACT

The use of quaternary ammonium compounds (QACs) as disinfectants has increased tremendously in the COVID-10 pandemic to inactivate Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV2). Dialkyldimethylammonium halides represent a frequently used type among QACs. Different halide anions, each ionically linked to the same quaternary ammonium cation, show clear differences in biocidal activity, toxicity and allergic potential. Likewise, the alkyl chain length at the ammonium cation induces different biocidal efficacy and toxicology. Therefore, the object of this research was to develop a rapid and reliable method for the detection of ammonium cation and halide anion in a single analytical run. For that purpose, a gas chromatography mass spectrometry (GC/MS) method was developed for QACs of the dialkyldimethylammonium type. Pyrolytic conversion of the QACs in the injector port of the gas chromatograph into volatile molecule species allows fast and reliable subsequent GC/MS analysis. The developed method is suited for the determination of both the quaternary ammonium cation and the corresponding halide anion in a single gas chromatographic run. The application of this method to bulk material and standard material of explicitly specified didecyldimethylammonium chloride revealed deviations from the manufacturer's specifications in a range up to four-fifths. Furthermore, didecyldimethylammonium chloride was detected in a disinfectant that does not comply with the labeling requirement for biocidal ingredients. With the method presented, results can be obtained for disinfectants with minimum effort within seven minutes.

2.
Pharmaceutics ; 13(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34959422

ABSTRACT

Successful drug administration to the central nervous system requires accurate adjustment of the drugs' molecular properties. Therefore, structure-derived descriptors of potential brain therapeutic agents are essential for an early evaluation of pharmacokinetics during drug development. The collision cross section (CCS) of molecules was recently introduced as a novel measurable parameter to describe blood-brain barrier (BBB) permeation. This descriptor combines molecular information about mass, structure, volume, branching and flexibility. As these chemical properties are known to influence cerebral pharmacokinetics, CCS determination of new drug candidates may provide important additional spatial information to support existing models of BBB penetration of drugs. Besides measuring CCS, calculation is also possible; but however, the reliability of computed CCS values for an evaluation of BBB permeation has not yet been fully investigated. In this work, prediction tools based on machine learning were used to compute CCS values of a large number of compounds listed in drug libraries as negative or positive with respect to brain penetration (BBB+ and BBB- compounds). Statistical evaluation of computed CCS and several other descriptors could prove the high value of CCS. Further, CCS-deduced maximum molecular size of BBB+ drugs matched the dimensions of BBB pores. A threshold for transcellular penetration and possible permeation through pore-like openings of cellular tight-junctions is suggested. In sum, CCS evaluation with modern in silico tools shows high potential for its use in the drug development process.

3.
J Pharm Biomed Anal ; 205: 114289, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34365190

ABSTRACT

Brain microdialysis samples of intensive care patients treated with the essential anesthetics ketamine, midazolam and propofol were investigated. Importantly, despite decades of clinical use, comprehensive human cerebral pharmacokinetic data of these drugs is still missing. To encounter this apparent lack of knowledge, we combined cerebral microdialysis with leading-edge analytical instrumentation to monitor the neurochemistry of living human patients. For the quantitative analysis, high performing analytical approaches were developed that can handle minute sample volumes and possible ultralow target analyte levels. The developed methods provided detection limits below 100 ng L-1 for all target analytes and high precision (below 4% RSD intraday). Methods were linear between LODs and 100 µg L-1 for ketamine, 75 µg L-1 for midazolam and 10 µg L-1 for propofol respectively, with coefficients of determination R2≥ 0.999. Further, being aware of the error-prone and demanding translation of microdialysis levels to interstitial concentrations, in vitro approaches for recovery testing of microdialysis probes as well as internal normalization approaches were conducted. Thus, we herein report the first cerebral pharmacokinetic data of ketamine, midazolam and propofol determined in microdialysis samples of 15 neurointensive care patients. We could prove blood-brain barrier penetration of all of the investigated anesthetics and could correlate applied dosages and actual brain exposition of ketamine. However, we emphasize the need of an expanded prospective study including individual microdialysis recovery testing as well as matched serum and/or cerebrospinal fluid collection for a more comprehensive cerebral pharmacokinetic understanding.


Subject(s)
Anesthetics , Ketamine , Propofol , Anesthetics, Intravenous , Brain , Humans , Midazolam , Prospective Studies
4.
Cells ; 9(9)2020 09 08.
Article in English | MEDLINE | ID: mdl-32911794

ABSTRACT

All-trans-retinoic acid (atRA) is the essential derivative of vitamin A and is of interest due to its various biological key functions. As shown in the recent literature, atRA also plays a role in the failing heart during myocardial infarction, the leading cause of death globally. To date insufficient mechanistic information has been available on related hypoxia-induced cell damage and reperfusion injuries. However, it has been demonstrated that a reduction in cellular atRA uptake abrogates hypoxia-mediated cell and tissue damage, which may offer a new route for intervention. Consequently, in this study, the effect of the novel cardio-protective compound 5-methoxyleoligin (5ML) on cellular atRA uptake was tested in human umbilical-vein endothelial cells (HUVECs). For this purpose, a high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method was developed to assess intra-cellular levels of the active substance and corresponding levels of vitamin A and its derivatives, including potential cis/trans isomers. This work also focused on light-induced isomerization and the stability of biological sample material to ensure sample integrity and avoid biased conclusions. This study provides evidence of the inhibitory effect of 5ML on cellular atRA uptake, a promising step toward a novel therapy for myocardial infarction.


Subject(s)
Human Umbilical Vein Endothelial Cells/drug effects , Oxygen/metabolism , Tretinoin/metabolism , Cell Hypoxia , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lignans/pharmacology
5.
Acta Neuropathol Commun ; 8(1): 78, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32493453

ABSTRACT

Treatment with small-molecule inhibitors, guided by precision medicine has improved patient outcomes in multiple cancer types. However, these compounds are often not effective against central nervous system (CNS) tumors. The failure of precision medicine approaches for CNS tumors is frequently attributed to the inability of these compounds to cross the blood-brain barrier (BBB), which impedes intratumoral target engagement. This is complicated by the fact that information on CNS penetration in CNS-tumor patients is still very limited. Herein, we evaluated cerebrospinal fluid (CSF) drug penetration, a well-established surrogate for CNS-penetration, in pediatric brain tumor patients. We analyzed 7 different oral anti-cancer drugs and their metabolites by high performance liquid chromatography mass spectrometry (HPLC-MS) in 42 CSF samples obtained via Ommaya reservoirs of 9 different patients. Moreover, we related the resulting data to commonly applied predictors of BBB-penetration including ABCB1 substrate-character, physicochemical properties and in silico algorithms. First, the measured CSF drug concentrations depicted good intra- and interpatient precision. Interestingly, ribociclib, vorinostat and imatinib showed high (> 10 nM), regorafenib and dasatinib moderate (1-10 nM) penetrance. In contrast, panobinostat und nintedanib were not detected. In addition, we identified active metabolites of imatinib and ribociclib. Comparison to well-established BBB-penetrance predictors confirmed low molecular weight, high proportion of free-drug and low ABCB1-mediated efflux as central factors. However, evaluation of diverse in silico algorithms showed poor correlation within our dataset. In summary, our study proves the feasibility of measuring CSF concentration via Ommaya reservoirs thus setting the ground for utilization of this method in future clinical trials. Moreover, we demonstrate CNS presence of certain small-molecule inhibitors and even active metabolites in CSF of CNS-tumor patients and provide a potential guidance for physicochemical and biological factors favoring CNS-penetration.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/cerebrospinal fluid , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Drug Delivery Systems/methods , ATP Binding Cassette Transporter, Subfamily B/metabolism , Adolescent , Adult , Antineoplastic Agents/pharmacokinetics , Biological Transport , Child , Female , Humans , Male , Young Adult
6.
Sci Rep ; 9(1): 19182, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31844124

ABSTRACT

Evaluating the ability of a drug to permeate the blood-brain barrier is not a trivial task due to the structural complexity of the central nervous system. Nevertheless, it is of immense importance to identify related properties of the drugs either to be able to produce a desired effect in the brain or to avoid unwanted side effects there. In the past, multiple methods have been used for that purpose. However, these are sometimes methodologically problematic and do not claim universal validity. Therefore, additional new methods for judging blood-brain barrier penetration by drugs are advantageous. Accordingly, within the scope of this study, we tried to introduce a new structure-derived parameter to predict the blood-brain barrier permeation of small molecules based on ion mobility mass spectrometry experiments - the collision cross section, as an illustration of the branching and the molecular volume of a molecule. In detail, we used ion mobility quadrupole time-of-flight mass spectrometric data of 46 pharmacologically active small-molecules as well as literature-derived permeability and lipophilicity data to set up our model. For the first time we were able to show a strong correlation between the brain penetration of pharmacologically active ingredients and their mass spectrometric collision cross sections.


Subject(s)
Blood-Brain Barrier/metabolism , Ion Mobility Spectrometry , Pharmaceutical Preparations/metabolism , Permeability , Small Molecule Libraries/metabolism
7.
J Sep Sci ; 42(6): 1257-1264, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30637930

ABSTRACT

To date, the commonly used intravenous anesthetic propofol has been widely studied, and fundamental pharmacodynamic and pharmacokinetic characteristics of the drug are known. However, propofol has not yet been quantified in vivo in the target organ, the human brain. Here, cerebral microdialysis offers the unique opportunity to sample propofol in the living human organism. Therefore, a highly sensitive analytical method for propofol quantitation in small sample volumes of 30 µL, based on direct immersion solid-phase microextraction was developed. Preconcentration was followed by gas chromatographic separation and mass spectrometric detection of the compound. This optimized method provided a linear range between the lower limit of detection (50 ng/L) and 200 µg/L. Matrix-matched calibration was used to compensate recovery issues. A precision of 2.7% relative standard deviation between five consecutive measurements and an interday precision of 6.4% relative standard deviation could be achieved. Furthermore, the permeability of propofol through a cerebral microdialysate system was tested. In summary, the developed method to analyze cerebral microdialysate samples, allows the in vivo quantitation of propofol in the living human brain. Additionally the calculation of extracellular fluid levels is enabled since the recovery of the cerebral microdialysis regarding propofol was determined.


Subject(s)
Cerebrospinal Fluid/chemistry , Microdialysis , Propofol/analysis , Solid Phase Microextraction , Gas Chromatography-Mass Spectrometry/instrumentation , Humans , Microdialysis/instrumentation , Solid Phase Microextraction/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...