Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Transl Stroke Res ; 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36853417

ABSTRACT

Acidic postconditioning by transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects in the acute phase of stroke. However, the effects of delayed chronic acidic postconditioning (DCAPC) initiated during the subacute phase of stroke or other acute brain injuries are unknown. Mice received daily DCAPC by inhaling 5%/10%/20% CO2 for various durations (three cycles of 10- or 20-min CO2 inhalation/10-min break) at days 3-7, 7-21, or 3-21 after photothrombotic stroke. Grid-walk, cylinder, and gait tests were used to assess motor function. DCAPC with all CO2 concentrations significantly promoted motor functional recovery, even when DCAPC was delayed for 3-7 days. DCAPC enhanced the puncta density of GAP-43 (a marker of axon growth and regeneration) and synaptophysin (a marker of synaptogenesis) and reduced the amoeboid microglia number, glial scar thickness and mRNA expression of CD16 and CD32 (markers of proinflammatory M1 microglia) compared with those of the stroke group. Cerebral blood flow (CBF) increased in response to DCAPC. Furthermore, the mRNA expression of TDAG8 (a proton-activated G-protein-coupled receptor) was increased during the subacute phase of stroke, while DCAPC effects were blocked by systemic knockout of TDAG8, except for those on CBF. DCAPC reproduced the benefits by re-expressing TDAG8 in the peri-infarct cortex of TDAG8-/- mice infected with HBAAV2/9-CMV-TDAG8-3flag-ZsGreen. Taken together, we first showed that DCAPC promoted functional recovery and brain tissue repair after stroke with a wide therapeutic time window of at least 7 days after stroke. Brain-derived TDAG8 is a direct target of DCAPC that induces neuroreparative effects.

2.
Neurosci Lett ; 678: 68-75, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29727731

ABSTRACT

Glial scar impedes axon regeneration and functional recovery following traumatic brain injury (TBI). Although it has been shown that rapamycin (a specific inhibitor of mammalian target of rapamycin) can reduce astrocyte reactivation in the early stage of TBI, its effect on glial scar formation has not been characterized in TBI and other acute brain injury models. To test this, ICR mice received daily administration of rapamycin (0.5 or 1.5 mg/kg, i.p.) beginning at 1 h after cryogenic TBI (cTBI). The results showed that at 3 d post-injury, 1.5 mg/kg rapamycin increased cTBI-induced motor functional deficits and infarct size, and attenuated astrocyte reactivation in the ipsilateral cortex, while 0.5 mg/kg rapamycin did not worsen brain damage and only slightly attenuated astrocyte reactivation. Furthermore, at 7 and 14 d after cTBI, 0.5 mg/kg rapamycin group showed a better motor functional performance than cTBI group. At 14 d post-injury, 0.5 mg/kg rapamycin significantly reduced the area and thickness of glial scar and chondroitin sulfate proteoglycan expression, accompanied by decreased expression of p-S6 and enhanced expression of growth associated protein 43 (an axon regeneration marker) in the region of glial scar. Our data suggest that long-term treatment with rapamycin can inhibit glial scar formation after cTBI, which may be involved in the mechanisms of increased axon regeneration and improved neurological functional recovery, and low-dose rapamycin may be more beneficial for such a therapy.


Subject(s)
Astrocytes/drug effects , Brain Injuries, Traumatic/complications , Brain/drug effects , Cicatrix/metabolism , Sirolimus/administration & dosage , Animals , Astrocytes/metabolism , Axons/drug effects , Behavior, Animal/drug effects , Brain/metabolism , Chondroitin Sulfate Proteoglycans/metabolism , Cicatrix/etiology , Cold Temperature , Male , Mice, Inbred ICR , Nerve Regeneration/drug effects , Recovery of Function , Rotarod Performance Test , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...