Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; : e0006823, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37754752

ABSTRACT

Crop microbiomes are widely recognized to play a role in crop stress resistance, but the ecological processes that shape crop microbiomes under water stress are unclear. Therefore, we investigated the bacterial communities of two oat (Avena sativa) and two wheat (Triticum aestivum) genotypes under different water stress conditions. Our results show that the microbial assemblage was determined by the crop compartment niche. Host selection pressure on the bacterial community increased progressively from soil to epiphyte to endophyte pathways, leading to a decrease in bacterial community diversity and network complexity. Source tracing shows that soil is the primary source of crop microbial communities and that bulk soil is the main potential source of crop microbiota. It filters gradually through the different compartment niches of the crop. We found that the phyla Actinobacteria, Proteobacteria, Gemmatimonadota, and Myxococcota were significantly enriched in bacterial communities associated with crop-resistance enzyme activity. Crop genotype influenced the composition of the rhizosphere soil microbial community, and the composition of the phylloplane microbial community was affected by water stress. IMPORTANCE In this paper, we investigated the assembly of the plant microbiome in response to water stress. We found that the determinant of microbiome assembly under water stress was the host type and that microbial communities were progressively filtered and enriched as they moved from soil to epiphyte to endophyte communities, with the main potential source being bulk soil. We also screened for bacterial communities that were significantly associated with crop enzyme activity. Our research provides insights into the manipulation of microbes in response to crop resistance to water stress.

2.
J Antibiot (Tokyo) ; 75(3): 164-171, 2022 03.
Article in English | MEDLINE | ID: mdl-35058576

ABSTRACT

The use of livestock manure is an important way for antibiotic resistance genes (ARGs) to enter the environment, and composting is an effective method for removing ARGs from livestock manure. In this study, different volume ratios of Chinese medicinal herbal residues (CMHRs) were added to laboratory-scale chicken manure composting to evaluate their effects, if any, on the behavior of ARGs, mobile genetic elements (MGEs), and the bacterial community. At the end of the composting period, the composition of the microbial community changed. Firmicutes decreased and Bacteroidetes increased. The most striking effect was that the relative abundance of the 21 ARGs and 5 MGEs detected decreased by varying degrees in the different treatments (except for sulI and intI1). The removal rate of the ARGs increased with the increased addition of CMHRs. The correlations between transferase genes (tnpA and tnpA-02) and ARGs were significant (p < 0.05); therefore, transposons play an important role in the horizontal gene transfer of ARGs in chicken manure. The results imply that CMHRs would be an effective bulking agent for the removal of ARGs from chicken manure composting.


Subject(s)
Anti-Bacterial Agents/adverse effects , Composting/methods , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Drugs, Chinese Herbal/pharmacology , Genes, Bacterial/drug effects , Manure/microbiology , Microbiota/drug effects , Animals , Bacteria/genetics , Chickens , Gene Transfer, Horizontal/genetics , Genes, Bacterial/genetics , Livestock/microbiology , Medicine, Chinese Traditional/methods , Microbiota/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...