Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 307
Filter
1.
Colloids Surf B Biointerfaces ; 241: 113989, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38838444

ABSTRACT

Icariin has been shown the promising therapeutic potential to treat inflammatory airway diseases, yet its poor lung distribution and retention restrict the clinical applications. To this end, this work aimed to prepare an icariin-phospholipid complex (IPC) formulation for sustained nebulization delivery that enabled excellent inhalability, improved lung exposure and prolonged duration of action. Icariin was found to react with soybean phospholipid to form supramolecular IPC, which was able to self-assemble into nanoparticle suspension. The suspension was stable during steam sterilization and nebulization processes, and its aerosols generated by a commercial nebulizer exhibited excellent aerodynamic properties and delivery efficiency. In vitro studies showed that the formation of complex sustained drug release, enhanced lung affinity and slowed lung clearance. The drug distribution in lung epithelial lining fluid (ELF) also demonstrated in vivo sustained release after intratracheal administration to mice. In addition, compared to free icariin, IPC improved the drug exposure to lung tissues and immune cells in the ELF by 4.61-fold and 39.5-fold, respectively. This resulted in improved and prolonged local anti-inflammatory effects up to 24 h in mice with lipopolysaccharide (LPS)-induced acute lung injury. Moreover, IPC improved survival rate of mice with acute respiratory distress syndrome (ARDS). Overall, the present phospholipid complex represented a promising formulation of icariin for the treatment of acute lung injury/ARDS by nebulization delivery.

2.
Chemphyschem ; : e202400412, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772911

ABSTRACT

The N1-Spermidine/spermine acetyltransferase (SSAT) serves as the rate-limiting enzyme in the polyamine metabolism pathway, specifically catalyzing the acetylation of spermidine, spermine, and other specific polyamines. The source of its enzymatic selectivity remains elusive. Here, we used quantum mechanics and molecular mechanics simulations combined with various technologies to explore the enzymatic mechanism of SSAT for endogenous polyamines from an atomic perspective. The static binding and chemical transformation were considered. The binding affinity was identified to be dependent on the protonated state of polyamine. The order of the binding affinity for Spm, Spd, and Put is consistent with the experimental results, which is also verified by the dynamic separation of polyamine and SSAT. Hydrogen bond interactions and salt bridges contribute most, and the common hot residues were identified. In addition, the transfer of acetyl and proton between polyamine and AcCoA was discovered to follow a concerted mechanism, and thermodynamic properties are responsible for the catalytic efficiency of SSAT. This work may be helpful for the development of polyamine derivatives based on catalysis to regulate polyamine metabolism.

3.
Chin J Nat Med ; 22(5): 466-480, 2024 May.
Article in English | MEDLINE | ID: mdl-38796219

ABSTRACT

Sixteen new dammarane-type triterpenoid saponins (1-16) featuring diverse structural variations in the side chain at C-17, along with twenty-one known analogues (17-37), have been isolated from the rhizomes of Gynostemma longipes C. Y. Wu, a plant renowned for its medicinal and edible properties. The structural elucidation of these compounds was accomplished through comprehensive analyses of 1D and 2D NMR and HRMS spectroscopic data, supplemented by comparison with previously reported data. Subsequent assays on the isolates for their protective effects against hypoxia-induced damage in pheochromocytoma cells (PC12 cells) revealed that nine saponins exhibited significant anti-hypoxic activities. Further investigation into the anti-hypoxia mechanisms of the representative saponins demonstrated that compounds 22 and 36 markedly reduced the levels of hypoxia-induced apoptosis. Additionally, these compounds were found to decrease the release of lactate dehydrogenase (LDH) and malondialdehyde (MDA), while increasing the activity of superoxide dismutase (SOD), thereby indicating that the saponins could mitigate hypoxia-induced injuries by ameliorating apoptosis and oxidative stress. These findings offer substantial evidence for the future utilization and development of G. longipes, identifying dammarane-type triterpenoid saponins as its active anti-hypoxic constituents.


Subject(s)
Apoptosis , Dammaranes , Gynostemma , Saponins , Triterpenes , PC12 Cells , Triterpenes/pharmacology , Triterpenes/chemistry , Gynostemma/chemistry , Rats , Animals , Apoptosis/drug effects , Molecular Structure , Saponins/pharmacology , Saponins/chemistry , Saponins/isolation & purification , Oxidative Stress/drug effects , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Rhizome/chemistry , Cell Hypoxia/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , L-Lactate Dehydrogenase/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry
6.
BMC Plant Biol ; 24(1): 480, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816792

ABSTRACT

Phosphorus, a crucial macronutrient essential for plant growth and development. Due to widespread phosphorus deficiency in soils, phosphorus deficiency stress has become one of the major abiotic stresses that plants encounter. Despite the evolution of adaptive mechanisms in plants to address phosphorus deficiency, the specific strategies employed by species such as Epimedium pubescens remain elusive. Therefore, this study observed the changes in the growth, physiological reponses, and active components accumulation in E. pubescensunder phosphorus deficiency treatment, and integrated transcriptome and miRNA analysis, so as to offer comprehensive insights into the adaptive mechanisms employed by E. pubescens in response to phosphorus deficiency across various stages of phosphorus treatment. Remarkably, our findings indicate that phosphorus deficiency induces root growth stimulation in E. pubescens, while concurrently inhibiting the growth of leaves, which are of medicinal value. Surprisingly, this stressful condition results in an augmented accumulation of active components in the leaves. During the early stages (30 days), leaves respond by upregulating genes associated with carbon metabolism, flavonoid biosynthesis, and hormone signaling. This adaptive response facilitates energy production, ROS scavenging, and morphological adjustments to cope with short-term phosphorus deficiency and sustain its growth. As time progresses (90 days), the expression of genes related to phosphorus cycling and recycling in leaves is upregulated, and transcriptional and post-transcriptional regulation (miRNA regulation and protein modification) is enhanced. Simultaneously, plant growth is further suppressed, and it gradually begins to discard and decompose leaves to resist the challenges of long-term phosphorus deficiency stress and sustain survival. In conclusion, our study deeply and comprehensively reveals adaptive strategies utilized by E. pubescens in response to phosphorus deficiency, demonstrating its resilience and thriving potential under stressful conditions. Furthermore, it provides valuable information on potential target genes for the cultivation of E. pubescens genotypes tolerant to low phosphorus.


Subject(s)
Epimedium , MicroRNAs , Phosphorus , Transcriptome , Phosphorus/deficiency , Phosphorus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Epimedium/genetics , Epimedium/metabolism , Epimedium/physiology , Adaptation, Physiological/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , Plant Leaves/genetics , Plant Leaves/metabolism , Stress, Physiological/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/growth & development
7.
Front Plant Sci ; 15: 1394587, 2024.
Article in English | MEDLINE | ID: mdl-38779067

ABSTRACT

Gynostemma pentaphyllum (Thunb.) Makino is an important producer of dammarene-type triterpenoid saponins. These saponins (gypenosides) exhibit diverse pharmacological benefits such as anticancer, antidiabetic, and immunomodulatory effects, and have major potential in the pharmaceutical and health care industries. Here, we employed single-cell RNA sequencing (scRNA-seq) to profile the transcriptomes of more than 50,000 cells derived from G. pentaphyllum shoot apexes and leaves. Following cell clustering and annotation, we identified five major cell types in shoot apexes and four in leaves. Each cell type displayed substantial transcriptomic heterogeneity both within and between tissues. Examining gene expression patterns across various cell types revealed that gypenoside biosynthesis predominantly occurred in mesophyll cells, with heightened activity observed in shoot apexes compared to leaves. Furthermore, we explored the impact of transposable elements (TEs) on G. pentaphyllum transcriptomic landscapes. Our findings the highlighted the unbalanced expression of certain TE families across different cell types in shoot apexes and leaves, marking the first investigation of TE expression at the single-cell level in plants. Additionally, we observed dynamic expression of genes involved in gypenoside biosynthesis and specific TE families during epidermal and vascular cell development. The involvement of TE expression in regulating cell differentiation and gypenoside biosynthesis warrant further exploration. Overall, this study not only provides new insights into the spatiotemporal organization of gypenoside biosynthesis and TE activity in G. pentaphyllum shoot apexes and leaves but also offers valuable cellular and genetic resources for a deeper understanding of developmental and physiological processes at single-cell resolution in this species.

8.
J Plant Res ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652407

ABSTRACT

Eomecon chionantha Hance, an endemic species in China, has a long medical history in Chinese ethnic minority medicine and is known for its anti-inflammatory and analgesic effects. However, studies of E. chionantha are lacking. In this study, we investigated the characteristics of the E. chionantha chloroplast genome and determined the taxonomic position of E. chionantha in Papaveraceae via phylogenetic analysis. In addition, we determined molecular markers to identify E. chionantha at the molecular level by comparing the chloroplast genomes of E. chionantha and its closely related species. The complete chloroplast genomic information indicated that E. chionantha chloroplast DNA (178,808 bp) contains 99 protein-coding genes, 8 rRNAs, and 37 tRNAs. Meanwhile, we were able to identify a total of 54 simple sequence repeats through our analysis. Our findings from the phylogenetic analysis suggest that E. chionantha shares a close relationship with four distinct species, namely Macleaya microcarpa, Coreanomecon hylomeconoides, Hylomecon japonica, and Chelidonium majus. Additionally, using the Kimura two-parameter model, we successfully identified five hypervariable regions (ycf4-cemA, ycf3-trnS-GGA, trnC-GCA-petN, rpl32-trnL-UAG, and psbI-trnS-UGA). To the best of our knowledge, this is the first report of the complete chloroplast genome of E. chionantha, providing a scientific reference for further understanding of E. chionantha from the perspective of the chloroplast genome and establishing a solid foundation for the future identification, taxonomic determination and evolutionary analysis of this species.

9.
Cell Rep Med ; 5(5): 101534, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38670100

ABSTRACT

Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.


Subject(s)
Autism Spectrum Disorder , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Nerve Tissue Proteins , Thalamus , Animals , Thalamus/metabolism , Thalamus/pathology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mice , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/pathology , Lamotrigine/pharmacology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Channelopathies/genetics , Channelopathies/metabolism , Channelopathies/pathology , Humans , Disease Models, Animal , Male , Neurons/metabolism , Female , Mice, Inbred C57BL , Mutation/genetics , Sleep/physiology , Sleep/drug effects , Sleep/genetics , Potassium Channels
10.
Chem Soc Rev ; 53(8): 4086-4153, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38465517

ABSTRACT

Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.


Subject(s)
Biocompatible Materials , Elastomers , Regenerative Medicine , Tissue Engineering , Humans , Elastomers/chemistry , Biocompatible Materials/chemistry , Animals
11.
Natl Sci Rev ; 11(4): nwae044, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38440214

ABSTRACT

There is still an urgent need to develop hydrogels with intelligent antibacterial ability to achieve on-demand treatment of infected wounds and accelerate wound healing by improving the regeneration microenvironment. We proposed a strategy of hydrogel wound dressing with bacteria-responsive self-activating antibacterial property and multiple nanozyme activities to remodel the regeneration microenvironment in order to significantly promote infected wound healing. Specifically, pH-responsive H2O2 self-supplying composite nanozyme (MSCO) and pH/enzyme-sensitive bacteria-responsive triblock micelles encapsulated with lactate oxidase (PPEL) were prepared and encapsulated in hydrogels composed of L-arginine-modified chitosan (CA) and phenylboronic acid-modified oxidized dextran (ODP) to form a cascade bacteria-responsive self-activating antibacterial composite hydrogel platform. The hydrogels respond to multifactorial changes of the bacterial metabolic microenvironment to achieve on-demand antibacterial and biofilm eradication through transformation of bacterial metabolites, and chemodynamic therapy enhanced by nanozyme activity in conjunction with self-driven nitric oxide (NO) release. The composite hydrogel showed 'self-diagnostic' treatment for changes in the wound microenvironment. Through self-activating antibacterial therapy in the infection stage to self-adaptive oxidative stress relief and angiogenesis in the post-infection stage, it promotes wound closure, accelerates wound collagen deposition and angiogenesis, and completely improves the microenvironment of infected wound regeneration, which provides a new method for the design of intelligent wound dressings.

12.
Structure ; 32(5): 575-584.e3, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38412855

ABSTRACT

Chaperonins Hsp60s are required for cellular vitality by assisting protein folding in an ATP-dependent mechanism. Although conserved, the human mitochondrial mHsp60 exhibits molecular characteristics distinct from the E. coli GroEL, with different conformational assembly and higher subunit association dynamics, suggesting a different mechanism. We previously found that the pathological mutant mHsp60V72I exhibits enhanced subunit association stability and ATPase activity. To provide structural explanations for the V72I mutational effects, here we determined a cryo-EM structure of mHsp60V72I. Our structural analysis combined with molecular dynamic simulations showed mHsp60V72I with increased inter-subunit interface, binding free energy, and dissociation force, all contributing to its enhanced subunit association stability. The gate to the nucleotide-binding (NB) site in mHsp60V72I mimicked the open conformation in the nucleotide-bound state with an additional open channel leading to the NB site, both promoting the mutant's ATPase activity. Our studies highlight the importance of mHsp60's characteristics in its biological function.


Subject(s)
Adenosine Triphosphate , Chaperonin 60 , Cryoelectron Microscopy , Molecular Dynamics Simulation , Humans , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Chaperonin 60/metabolism , Chaperonin 60/chemistry , Chaperonin 60/genetics , Protein Binding , Binding Sites , Protein Stability , Mutation , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Protein Conformation
13.
Chem Sci ; 15(8): 2867-2882, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38404376

ABSTRACT

The regulation of enzymes and development of polyamine analogs capable of controlling the dynamics of endogenous polyamines to achieve anti-tumor effects is one of the biggest challenges in polyamine research. However, the root of the problem remains unsolved. This study represents a significant milestone as it unveils, for the first time, the comprehensive catalytic map of acetylpolyamine oxidase that includes chemical transformation and product release kinetics, by utilizing multiscale simulations with over six million dynamical snapshots. The transportation of acetylspermine is strongly exothermic, and high binding affinity of enzyme and reactant is observed. The transfer of hydride from polyamine to FAD is the rate-limiting step, via an H-shift coupled electron transfer mechanism. The two products are released in a detour stepwise mechanism, which also impacts the enzymatic efficiency. Inspired by these mechanistic insights into enzymatic catalysis, we propose a novel strategy that regulates the polyamine level and catalytic progress through the action of His64. Directly suppressing APAO by mutating His64 further inhibited growth and migration of tumor cells and tumor tissue in vitro and in vivo. Therefore, the network connecting microcosmic and macroscopic scales opens up new avenues for designing polyamine compounds and conducting anti-tumor research in the future.

14.
Adv Healthc Mater ; 13(9): e2303255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38253413

ABSTRACT

Partial-thickness cartilage defect (PTCD) is a common and formidable clinical challenge without effective therapeutic approaches. The inherent anti-adhesive characteristics of the extracellular matrix within cartilage pose a significant impediment to the integration of cells or biomaterials with the native cartilage during cartilage repair. Here, an injectable photocrosslinked bioadhesive hydrogel, consisting of gelatin methacryloyl (GM), acryloyl-6-aminocaproic acid-g-N-hydroxysuccinimide (AN), and poly(lactic-co-glycolic acid) microspheres loaded with kartogenin (KGN) (abbreviated as GM/AN/KGN hydrogel), is designed to enhance interfacial integration and repair of PTCD. After injected in situ at the irregular defect, a stable and robust hydrogel network is rapidly formed by ultraviolet irradiation, and it can be quickly and tightly adhered to native cartilage through amide bonds. The hydrogel exhibits good adhesion strength up to 27.25 ± 1.22 kPa by lap shear strength experiments. The GM/AN/KGN hydrogel demonstrates good adhesion, low swelling, resistance to fatigue, biocompatibility, and chondrogenesis properties in vitro. A rat model with PTCD exhibits restoration of a smoother surface, stable seamless integration, and abundant aggrecan and type II collagen production. The injectable stable adhesive hydrogel with long-term chondrogenic differentiation capacity shows great potential to facilitate repair of PTCD.


Subject(s)
Anilides , Chondrogenesis , Hydrogels , Phthalic Acids , Rats , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Delayed-Action Preparations/pharmacology , Cartilage
15.
Adv Healthc Mater ; 13(8): e2303157, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38247348

ABSTRACT

Elevated temperatures can deactivate tissues in the burn wound area, allowing pathogenic bacteria to multiply on the wound surface, ultimately leading to local or systemic infection. An ideal burn dressing should provide antibacterial properties and facilitate painless dressing changes. Silk microfibers coated with poly (2, 3, 4-trihydroxybenzaldehyde) (referred to as mSF@PTHB) to in situ reduce AgNO3 to silver nanoparticles (AgNPs) in a hydrazide hyaluronic acid-based hydrogel are utilized. The findings indicate a more homogeneous distribution of the silver elements compared to directly doped AgNPs, which also conferred antioxidant and antibacterial properties to the hydrogel. Moreover, hydrogels containing pH-responsive dynamic acylhydrazone bonds can undergo a gel-sol transition in a weak acid environment, leading to the painless removal of adhesive hydrogel dressings. Notably, the on-demand replaceable self-healing antioxidant hydrogel dressing exhibits antibacterial effects and cytocompatibility in vitro, and the wound-healing performance of the hydrogel is validated by treating a burn mouse model with full-thickness skin defects. It is demonstrated that hydrogel dressings offer a viable therapeutic approach to prevent infection and facilitate the healing of burn wounds.


Subject(s)
Burns , Metal Nanoparticles , Mice , Animals , Hydrogels/chemistry , Silver/chemistry , Hyaluronic Acid , Metal Nanoparticles/chemistry , Antioxidants/therapeutic use , Wound Healing , Bandages , Anti-Bacterial Agents/chemistry , Burns/drug therapy
16.
Regen Biomater ; 11: rbad110, 2024.
Article in English | MEDLINE | ID: mdl-38173767

ABSTRACT

For the treatment of MRSA-infected wounds, the spatiotemporally sequential delivery of antibacterial and anti-inflammatory drugs is a promising strategy. In this study, ROS-responsive HA-PBA/PVA (HPA) hydrogel was prepared by phenylborate ester bond cross-linking between hyaluronic acid-grafted 3-amino phenylboronic acid (HA-PBA) and polyvinyl alcohol (PVA) to achieve spatiotemporally controlled release of two kinds of drug to treat MRSA-infected wound. The hydrophilic antibiotic moxifloxacin (M) was directly loaded in the hydrogel. And hydrophobic curcumin (Cur) with anti-inflammatory function was first mixed with Pluronic F127 (PF) to form Cur-encapsulated PF micelles (Cur-PF), and then loaded into the HPA hydrogel. Due to the different hydrophilic and hydrophobic nature of moxifloxacin and Cur and their different existing forms in the HPA hydrogel, the final HPA/M&Cur-PF hydrogel can achieve different spatiotemporally sequential delivery of the two drugs. In addition, the swelling, degradation, self-healing, antibacterial, anti-inflammatory, antioxidant property, and biocompatibility of hydrogels were tested. Finally, in the MRSA-infected mouse skin wound, the hydrogel-treated group showed faster wound closure, less inflammation and more collagen deposition. Immunofluorescence experiments further confirmed that the hydrogel promoted better repair by reducing inflammation (TNF-α) and promoting vascular (VEGF) regeneration. In conclusion, this HPA/M&Cur-PF hydrogel that can spatiotemporally sequential deliver antibacterial and anti-inflammatory drugs showed great potential for the repair of MRSA-infected skin wounds.

17.
J Cardiovasc Transl Res ; 17(1): 71-84, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37668897

ABSTRACT

Cardiovascular diseases (CVD) account for the largest bulk of deaths worldwide, posing a massive burden on societies and the global healthcare system. Besides, the incidence and prevalence of these diseases are on the rise, demanding imminent action to revert this trend. Cardiovascular pathogenesis harbors a variety of molecular and cellular mechanisms among which dysregulated metabolism is of significant importance and may even proceed other mechanisms. The healthy heart metabolism primarily relies on fatty acids for the ultimate production of energy through oxidative phosphorylation in mitochondria. Other metabolites such as glucose, amino acids, and ketone bodies come next. Under pathological conditions, there is a shift in metabolic pathways and the preference of metabolites, termed metabolic remodeling or reprogramming. In this review, we aim to summarize cardiovascular metabolism and remodeling in different subsets of CVD to come up with a new paradigm for understanding and treatment of these diseases.


Subject(s)
Cardiovascular Diseases , Heart , Humans , Glucose/metabolism , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/therapy , Energy Metabolism
18.
Adv Mater ; 36(15): e2308701, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37971104

ABSTRACT

Developing hydrogels that can quickly reach deep bleeding sites, adhere to wounds, and expand to stop lethal and/or noncompressible bleeding in civil and battlefield environments remains a challenge. Herein, an injectable, antibacterial, self-expanding, and self-propelling hydrogel bioadhesive with procoagulant activity and rapid gelation is reported. This hydrogel combines spontaneous gas foaming and rapid Schiff base crosslinking for lethal massive hemorrhage. Hydrogels have rapid gelation and expansion rate, high self-expanding ratio, excellent antibacterial activity, antioxidant efficiency, and tissue adhesion capacity. In addition, hydrogels have good cytocompatibility, procoagulant ability, and higher blood cell/platelet adhesion activity than commercial combat gauze and gelatin sponge. The optimized hydrogel (OD-C/QGQL-A30) exhibits better hemostatic ability than combat gauze and gelatin sponge in rat liver and femoral artery bleeding models, rabbit volumetric liver loss massive bleeding models with/without anticoagulant, and rabbit liver and kidney incision bleeding models with bleeding site not visible. Especially, OD-C/QGQL-A30 rapidly stops the bleedings from pelvic area of rabbit, and swine subclavian artery vein transection. Furthermore, OD-C/QGQL-A30 has biodegradability and biocompatibility, and accelerates Methicillin-resistant S. aureus (MRSA)-infected skin wound healing. This injectable, antibacterial, self-expanding, and self-propelling hydrogel opens up a new avenue to develop hemostats for lethal massive bleeding, abdominal organ bleeding, and bleeding from coagulation lesions.


Subject(s)
Hydrogels , Methicillin-Resistant Staphylococcus aureus , Rats , Animals , Rabbits , Swine , Hydrogels/pharmacology , Adhesives , Wound Healing , Gelatin , Hemorrhage/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
19.
J Plant Res ; 137(1): 37-48, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37917204

ABSTRACT

Geum japonicum (Rosaceae) has been widely used in China as a traditional herbal medicine due to its high economic and medicinal value. However, the appearance of Geum species is relatively similar, making identification difficult by conventional phenotypic methods, and the studies of genomics and species evolution are lacking. To better distinguish the medicinal varieties and fill this gap, we carried out relevant research on the chloroplast genome of G. japonicum. Results show a typical quadripartite structure of the chloroplast genome of G. japonicum with a length of 156,042 bp. There are totally 131 unique genes in the genome, including 87 protein-coding genes, 36 tRNA genes, and 8 rRNA genes, and there were also 87 SSRs identified and mostly mononucleotide Adenine-Thymine. We next compared the plastid genomes among four Geum species and obtained 14 hypervariable regions, including ndhF, psbE, trnG-UCC, ccsA, trnQ-UUG, rps16, psbK, trnL-UAA, ycf1, ndhD, atpA, petN, rps14, and trnK-UUU. Phylogenetic analysis revealed that G. japonicum is most closely related to Geum aleppicum, and possibly has some evolutionary relatedness with an ancient relic plant Taihangia rupestris. This research enriched the genome resources and provided fundamental insights for evolutionary studies and the phylogeny of Geum.


Subject(s)
Genome, Chloroplast , Geum , Phylogeny , Genome, Chloroplast/genetics , Geum/genetics , Genomics/methods , Chloroplasts/genetics
20.
Neuron ; 112(3): 441-457.e6, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37992714

ABSTRACT

Social isolation is a risk factor for multiple mood disorders. Specifically, social isolation can remodel the brain, causing behavioral abnormalities, including sociability impairments. Here, we investigated social behavior impairment in mice following chronic social isolation stress (CSIS) and conducted a screening of susceptible brain regions using functional readouts. CSIS enhanced synaptic inhibition in the anterior cingulate cortex (ACC), particularly at inhibitory synapses of cholecystokinin (CCK)-expressing interneurons. This enhanced synaptic inhibition in the ACC was characterized by CSIS-induced loss of presynaptic cannabinoid type-1 receptors (CB1Rs), resulting in excessive axonal calcium influx. Activation of CCK-expressing interneurons or conditional knockdown of CB1R expression in CCK-expressing interneurons specifically reproduced social impairment. In contrast, optogenetic activation of CB1R or administration of CB1R agonists restored sociability in CSIS mice. These results suggest that the CB1R may be an effective therapeutic target for preventing CSIS-induced social impairments by restoring synaptic inhibition in the ACC.


Subject(s)
Cannabinoids , Gyrus Cinguli , Animals , Male , Mice , Cannabinoids/metabolism , Cannabinoids/pharmacology , Gyrus Cinguli/metabolism , Interneurons/physiology , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Social Isolation , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...