Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953499

ABSTRACT

Using the quasi-classical trajectory method, we systematically studied the state-to-state vibrational relaxation process of N2(v1) + N2(v2) collisions over a wide temperature range (5000-30,000 K). Different temperature dependencies of the single- and multiquantum VV and VT events in various (v1,v2) collisions are captured, with the dominant channel being related to the initial vibrational energy levels (vmax = 50). At a specified relative translational energy, there is a monotonic relationship of the VT cross sections with the vibrational energy level, particularly in high-energy collisions. Additionally, we constructed well-trained neural network models (R-values reaching 0.99) using limited quasi-classical trajectory (QCT) data sets, which can be used to predict the state-to-state cross sections and rate coefficients of the VV processes N2(v1) + N2(v2) → N2(v1 - Δv) + N2(v2 + Δv) and VT processes N2(v1) + N2(v2) → N2(v1 - Δv) + N2(v2) (Δv = ±1, ±2, ±3) for collisions with arbitrary initial vibrational states. This work not only significantly reduces computational resources but also serves as a reference for the study of the state-to-state dynamics of all four-atom collision systems in hypersonic flows.

2.
Phys Chem Chem Phys ; 25(43): 29475-29485, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37888773

ABSTRACT

The collision-induced dissociation reaction of O2 (v, j) + N, a fundamental process in nonequilibrium air flows around reentry vehicles, has been studied systematically by applying molecular dynamics simulations on the 2A', 4A' and 6A' potential energy surfaces of NO2 in a wide temperature range. In particular, we have directly investigated the role of the 6A' surface in this process and discussed the applicability of the simplified approximate rate models proposed by Esposito et al. and Andrienko et al. based on the lowest two surfaces. The present work indicates that the state-selected dissociation of O2 + N is dominated by the 6A' surface for all except for the low-lying O2 states. Furthermore, a complete database of rovibrationally detailed cross sections and rate coefficients is a prerequisite for modeling the relevant nonequilibrium air flows in spacecraft reentry. Here, the combination of the quasi-classical trajectory (QCT) and the neural network (NN) has been proposed to predict all state-selected dissociation cross sections and further construct dissociation parameter sets. All NN-based models established in this work accurately reproduce the results calculated from QCT simulations over a wide range of rovibrational quantum numbers with R2 > 0.99. Compared with the explicit QCT simulations, the computational requirement for predicting cross sections and rates based on the NN models significantly reduces. Finally, thermal equilibrium rate coefficients computed from NN models match remarkably well the available theoretical and experimental results in the whole temperature range explored.

SELECTION OF CITATIONS
SEARCH DETAIL
...