Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Water Sci Technol ; 89(4): 1047-1062, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38423616

ABSTRACT

With the background of carbon neutrality, the resource and energy utilization of excess sludge (ES) have become the focus of future research. The pyrolysis of ES can produce biochar and enrich phosphorus (P). In this paper, the existing forms and recovery efficiencies of P in biochar from ES (BCES) were investigated. The results showed that the total phosphorus (TP) content of BCES at 850 °C was 65.1 mg/g, and the inorganic phosphorus (IP) content was 64.2 mg/g. The TP content of BCES was two times heavier than that of ES. The main ingredient of ES was quartz (SiO2), while the main phases of BCES were quartz (SiO2) and aluminum phosphate (AlPO4) at 650 -850 °C, and P mainly existed in the form of AlPO4. When the pyrolysis temperature was 800 and 850 °C, two new minerals appeared: Ca5(PO4)3OH and CaZn2(PO4)2·2H2O. Based on the conditions of a leaching time of 150 min, a H2SO4 concentration of 0.2 mol/L, a stirring rate of 220 rpm and a liquid-solid ratio of 50 mL/g, the leaching efficiency of P in BCES was found to be 100%. The pyrolysis temperature had no effect on leaching efficiencies of P; however, a higher pyrolysis temperature promoted metal leaching content.


Subject(s)
Phosphorus , Sewage , Quartz , Silicon Dioxide , Charcoal
2.
Chemosphere ; 352: 141518, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387664

ABSTRACT

Under the background of carbon neutrality, resource and energy utilization technologies have become the focus of future research. The paper investigated the removal efficiencies and varying characteristics of substrates and microbial community structure in the simultaneous sulfide and nitrate biological removal (SSNBR) process. The results showed that the sulfide and nitrate removal loads reached 2.998 kg m-3∙d-1 and 1.011 kg m-3∙d-1 respectively when HRT was 2.4 h. The sulfide and nitrate molar ratios (S/N ratios) hardly influenced the removal efficiencies of sulfide and nitrate. However, the reaction products sulfate and nitrite concentrations in the effluent became higher as the S/N ratios decreased. Under the S/N ratio of 5:5, when the influent sulfide and nitrate concentrations were improved from 100 mg L-1 to 600 mg L-1 and from 87.5 mg L-1 to 306.25 mg L-1, respectively, the sulfide removal efficiencies were all above 99%, but the nitrate removal efficiencies reduced from 95.53% to 55.54%. Sulfide removal effect was better than nitrate. HRT had great effect on the nitrate removal efficiencies, but hardly affected the sulfide removal. When HRT was shortened from 12 h to 2.4 h, the sulfide removal efficiencies were all above 99%, while the nitrate removal efficiencies decreased from 93.14% to 77.04%. The main functional genera included Exiguobacterium, Clostridium, Bacillus, Thiobacillus and Sphingomonas, all of which had the nitrogen and sulfur removal functions.


Subject(s)
Microbiota , Thiobacillus , Nitrates , Sulfides , Sulfur , Bioreactors/microbiology , Denitrification , Nitrogen
3.
Huan Jing Ke Xue ; 38(2): 647-653, 2017 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-29964522

ABSTRACT

The single-stage A/O and multi-stage A/O processes were simulated by sequencing batch reactors (SBRs) with alternate stirring and aeration. The removal efficiency of nitrogen and the release mechanism of N2O were studied under the identical conditions of influent quality, hydraulic retention time (HRT), sludge retention time(SRT), temperature and anoxic/oxic (A/O) retention time ratio. Experimental results showed that COD or ammonia-nitrogen removal had no significant difference between the single-stage and the multi-stage A/O processes for the influent quality equivalent to municipal wastewater. However, TN removal efficiency of the former was better than the later with 72.1% and 52.2%, respectively. In the conversion of total nitrogen, during the typical cycle in the single-stage A/O and multi-stage A/O processes, the yields of N2O were 16.95 mg and 3.95 mg, respectively. The conversion rate, which is the ratio of N2O yield and TN removal, was respectively 11.47% and 4.11%. N2O production and emission occurred mainly in aerobic (nitrification) phase while there was little N2O emission in anoxic (denitrification) phase. Although the dominant species of AOB was both Nitrosomonas in the single-stage A/O and the multi-stage A/O processes under the same operating conditions, it was more conducive to the growth of nitrifying bacteria (AOB, NOB) in the single-stage A/O process with the greater abundance of Nitrosomonas. Meanwhile, the type and abundance of NOB in the single-stage A/O process were significantly more than in the multi-stage A/O process too. Therefore, it is more competitive to deal with the high-strengthening ammonia-nitrogen wastewater in the single-stage A/O process. In the actual operation of wastewater treatment, using appropriate partitions of A/O or oxygen-supplying modes can not only result in better nitrogen removal but also decrease the secondary pollution caused by N2O to the atmosphere.


Subject(s)
Bioreactors , Denitrification , Nitrification , Nitrogen/isolation & purification , Nitrous Oxide/metabolism , Nitrosomonas , Sewage , Waste Disposal, Fluid
4.
Water Res ; 47(11): 3845-53, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23642653

ABSTRACT

Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Nitrogen/metabolism , Water Purification/methods , Air , Ammonia/metabolism , Bacteria/growth & development , Denitrification , Gammaproteobacteria/metabolism , Microbial Consortia/physiology , Nitrification , Nitrogen/isolation & purification , Oxidation-Reduction , Oxygen/metabolism , Sewage , Wastewater , Water Purification/instrumentation
5.
Huan Jing Ke Xue ; 33(3): 910-5, 2012 Mar.
Article in Chinese | MEDLINE | ID: mdl-22624387

ABSTRACT

The oxidation ditch operation mode was simulated by sequencing batch reactor (SBR) system with alternate stirring and aeration. The nitrogen and phosphorus removal efficiencies were investigated in two different aeration modes: point aeration and step aeration. Experimental results show that oxygen is dissolved more efficiently in point aeration mode with a longer aerobic region in the same air supply capacity, but dissolved oxygen (DO) utilization efficiency for nitrogen and phosphorus removal is high in step aeration mode. Nitrification abilities of the two modes are equal with ammonia-nitrogen (NH4(+) -N) removal efficiency of 96.68% and 97.03%, respectively. Nitrifier activities are 4.65 and 4.66 mg x (g x h)(-1) respectively. When the ratio of anoxic zones and the aerobic zones were 1, the total nitrogen (TN) removal efficiency of point aeration mode in 2, 4 or 7 partitions was respectively 60.14%, 47.93% and 33.7%. The total phosphorus (TP) removal efficiency was respectively 28.96%, 23.75% and 24.31%. The less the partitions, the higher the nitrogen and phosphorus removal efficiencies, but it is in more favor of TN removal. As for step aeration mode with only one partitioning zone, the TN and TP removal efficiencies are respectively 64.21% and 49.09%, which is better than in point aeration mode, but more conducive to the improvement of TP removal efficiency. Under the condition of sufficient nitrification in step aeration mode, the nitrogen and phosphorus removal is better with the increase of anoxic zone. The removal efficiencies of TN and TP respectively rose to 73.94% and 54.18% when the ratio of anoxic zones and the aerobic zones was increased from 1 : 1 to 1. 8 : 1. As the proportion of anoxic zones was enlarged further, nitrification and operation stability were weakened so as to affect the nitrogen and phosphorus removal efficiencies.


Subject(s)
Bioreactors , Nitrogen/isolation & purification , Phosphorus/isolation & purification , Sewage/chemistry , Wastewater/chemistry , Aerobiosis , Bioreactors/microbiology , Computer Simulation , Nitrification , Nitrogen/metabolism , Oxidation-Reduction , Phosphorus/metabolism , Sewage/microbiology , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...