Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Main subject
Publication year range
1.
Materials (Basel) ; 17(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38473518

ABSTRACT

The aminated sodium lignosulfonate (AELS) was prepared through a Mannich reaction and characterized via FT-IR, TG, SEM and XPS in this study. Subsequently, the adsorption capacity of AELS for methyl blue (MB) was evaluated under various conditions such as pH, adsorbent dosage, contact time, initial concentration and temperature. The adsorption kinetics, isotherms and thermodynamics of AELS for methyl blue were investigated and analyzed. The results were found to closely adhere to the pseudo-second-order kinetic model and Langmuir isotherm model, suggesting a single-molecular-layer adsorption process. Notably, the maximum adsorption capacity of AELS for methyl blue (153.42 mg g-1) was achieved under the specified conditions (T = 298 K, MAELS = 0.01 g, pH = 6, VMB = 25 mL, C0 = 300 mg L-1). The adsorption process was determined to be spontaneous and endothermic. Following five adsorption cycles, the adsorption capacity exhibited a minimal reduction from 118.99 mg g-1 to 114.33 mg g-1, indicating good stability. This study contributes to the advancement of utilizing natural resources effectively and sustainably.

2.
Angew Chem Int Ed Engl ; 63(1): e202316208, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37990065

ABSTRACT

Green organic materials composed of C, H, O, and N elements are receiving more and more attention worldwide. However, the high solubility, poor electrical conductivity, and long activation time limit the development of organic materials in practice. Herein, two stable covalent organic materials with alkynyl linkage between benzene rings and benzothiadiazole groups with different amounts of fluorine atoms modification (defined as BOP-0F and BOP-2F), are designed for lithium-ion batteries. Both BOP-0F and BOP-2F can achieve superior reversible capacities of ≈719.8 and 713.5 mAh g-1 over 100 cycles on account of the redox activity of alkynyl (two-electron involved) and benzothiadiazole units (five-electron involved) in these organic materials. While BOP-2F electrodes exhibit much more stable cycling performance than BOP-0F electrodes, especially without pronounced capacity ascending during initial cycling. It can be assigned to the synergy effect of alkynyl linkage and fluorine atom modification in BOP-2F. The lithium storage and activation mechanism of alkynyl, benzothiadiazole, and fluorine groups have also been deeply probed by a series of material characterizations and theoretical simulations. This work could be noteworthy in providing novel tactics for the molecular design and investigation of high-efficiency organic electrodes for energy storage.

3.
Nanomaterials (Basel) ; 13(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38133048

ABSTRACT

Cellulose-based carbon (CBC) is widely known for its porous structure and high specific surface area and is liable to adsorb gas molecules and macromolecular pollutants. However, the application of CBC in gas sensing has been little studied. In this paper, a ZnO/CBC heterojunction was formed by means of simple co-precipitation and high-temperature carbonization. As a new ammonia sensor, the prepared ZnO/CBC sensor can detect ammonia that the previous pure ZnO ammonia sensor cannot at room temperature. It has a great gas sensing response, stability, and selectivity to an ammonia concentration of 200 ppm. This study provides a new idea for the design and synthesis of biomass carbon-metal oxide composites.

4.
Angew Chem Int Ed Engl ; 62(30): e202302143, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37269463

ABSTRACT

The poor conductivity of the pristine bulk covalent organic material is the main challenge for its application in energy storage. The mechanism of symmetric alkynyl bonds (C≡C) in covalent organic materials for lithium storage is still rarely reported. Herein, a nanosized (≈80 nm) alkynyl-linked covalent phenanthroline framework (Alkynyl-CPF) is synthesized for the first time to improve the intrinsic charge conductivity and the insolubility of the covalent organic material in lithium-ion batteries. Because of the high degree of electron conjugation along alkynyl units and N atoms from phenanthroline groups, the Alkynyl-CPF electrodes with the lowest HOMO-LUMO energy gap (ΔE=2.629 eV) show improved intrinsic conductivity by density functional theory (DFT) calculations. As a result, the pristine Alkynyl-CPF electrode delivers superior cycling performance with a large reversible capacity and outstanding rate properties (1068.0 mAh g-1 after 300 cycles at 100 mA g-1 and 410.5 mAh g-1 after 700 cycles at 1000 mA g-1 ). Moreover, by Raman, FT-IR, XPS, EIS, and theoretical simulations, the energy-storage mechanism of C≡C units and phenanthroline groups in the Alkynyl-CPF electrode has been investigated. This work provides new strategies and insights for the design and mechanism investigation of covalent organic materials in electrochemical energy storage.

5.
Nanomaterials (Basel) ; 13(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37111018

ABSTRACT

Germanium-based multi-metallic-oxide materials have advantages of low activation energy, tunable output voltage, and high theoretical capacity. However, they also exhibit unsatisfactory electronic conductivity, sluggish cation kinetics, and severe volume change, resulting in inferior long-cycle stability and rate performance in lithium-ion batteries (LIBs). To solve these problems, we synthesize metal-organic frameworks derived from rice-like Zn2GeO4 nanowire bundles as the anode of LIBs via a microwave-assisted hydrothermal method, minimizing the particle size and enlarging the cation's transmission channels, as well as, enhancing the electronic conductivity of the materials. The obtained Zn2GeO4 anode exhibits superior electrochemical performance. A high initial charge capacity of 730 mAhg-1 is obtained and maintained at 661 mAhg-1 after 500 cycles at 100 mA g-1 with a small capacity degradation ratio of ~0.02% for each cycle. Moreover, Zn2GeO4 exhibits a good rate performance, delivering a high capacity of 503 mA h g-1 at 5000 mA g-1. The good electrochemical performance of the rice-like Zn2GeO4 electrode can be attributed to its unique wire-bundle structure, the buffering effect of the bimetallic reaction at different potentials, good electrical conductivity, and fast kinetic rate.

6.
Langmuir ; 38(42): 12739-12756, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36245364

ABSTRACT

As an effective non-noble, molybdenum carbide (MoxC: MoC or Mo2C) has attracted extensive attention and is regarded as a promising research area in the near future owing to its good biocompatibility, high stability, band gap adjustability, rich valence states, and excellent catalytic activity. This Perspective summarizes the recent progress and achievements for the molybdenum carbide-based catalysts. First, the crystal and band structures of molybdenum carbides are generally presented. Second, various modifying strategies for molybdenum carbides are outlined to enhance the photocatalytic performance, including doping engineering, vacancy engineering, morphology and structure engineering, and the establishment of molybdenum carbide-based composite catalysts. Finally, potential applications in the photocatalysis area of molybdenum carbide-based photocatalyst are generalized. Future development trends and perspective for this promising material are also discussed.


Subject(s)
Molybdenum , Molybdenum/chemistry , Catalysis
7.
Angew Chem Int Ed Engl ; 61(48): e202213276, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36196009

ABSTRACT

The rechargeable lithium/sodium-iodine battery (Li/Na-I2 ) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen-bonded organic framework (HOF) linked to the Ti3 C2 Tx MXene complex (HOF@Ti3 C2 Tx ) has been presented for iodine loading. HOF is self-assembled by organic monomers through hydrogen bonding interactions between each monomer. It leads to numerous cavities in HOF structure, which can encapsulate iodine through various adsorptive sites and intermolecular interactions. The unique structure of complex can accelerate the nucleation of iodine, achieve fast reaction kinetics, stabilize iodide and retard the shuttle effect, thus improving the cycling stability of I2 -based batteries. The I2 /HOF@Ti3 C2 Tx exhibits large reversible capacities of 260.2 and 207.6 mAh g-1 at 0.2 C after repeated cycling for Li-I2 and Na-I2 batteries, respectively. This work can gain insights into the HOF-related energy storage application with reversible iodine encapsulation and its related redox reaction mechanisms with Li and Na metal ions.

8.
ACS Nano ; 16(6): 9830-9842, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35658409

ABSTRACT

Covalent organic polymers are attracting more and more attention for energy storage devices due to their lightweight, molecular viable design, stable structure, and environmental benignity. However, low charge-carrier mobility of pristine covalent organic materials is the main drawback for their application in lithium-ion batteries. Herein, a yolk-shell bimetal-modified quinonyl-rich covalent organic material, Co@2AQ-MnO2, has been designed and synthesized by in situ loading of petal-like nanosized MnO2 and coordinating with Co centers, with the aim to improve the charge conductivity of the covalent organic polymer and activate its Li-storage sites. As investigated by in situ FT-IR, ex situ XPS, and electrochemical probing, the quinonyl-rich structure provides abundant redox sites (carbonyl groups and π electrons from the benzene ring) for lithium reaction, and the introduction of two types of metallic species promotes the charge transfer and facilitates more efficient usage of active energy-storage sites in Co@2AQ-MnO2. Thus, the Co@2AQ-MnO2 electrode exhibits good cycling performance with large reversible capacity and excellent rate performance (1534.4 mA h g-1 after 200 cycles at 100 mA g-1 and 596.0 mA h g-1 after 1000 cycles at 1000 mA g-1).

9.
ACS Appl Mater Interfaces ; 14(26): 29974-29985, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35758292

ABSTRACT

The high solubility of the small organic molecule materials in organic electrolytes hinders their development in rechargeable batteries. Hence, this work designs an ultrarobust hydrogen-bonded organic-inorganic hybrid material: the small organic unit of the 1,3,6,8-tetrakis (p-benzoic acid) pyrene (TBAP) molecule connected with the hydroxylated Ti3C2Tx MXene through hydrogen bonds between the terminal groups of -COOH and -OH. The robust and elastic hydrogen bonds can empower the TBAP, despite being a low-molecule organic chemical, with unusually low solubility in organic electrolytes and thermal stability. The alkali-treated Ti3C2Tx MXene provides a hydroxyl-rich conductive network, and the small organic molecule of TBAP reduces the restacking of MXene layers. Therefore, the combination of these two materials complements each other well, and this organic-inorganic TBAP@D-Ti3C2Tx electrode delivers large reversible capacities and long cyclic life. Notably, with the assistance of the in situ FT-IR characterization of the electrode within the fully lithiated (0.005 V) and the delithiated (3.0 V) states, it is revealed that a powerful π-Li cation effect mainly governs the lithium-storage mechanism with the highly activated benzene ring and each C6 aromatic ring, which can reversibly accept six Li-ions to form a 1:1 Li/C complex.

10.
Adv Mater ; 34(24): e2201801, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35417929

ABSTRACT

Uncontrolled lithium dendrite growth and dramatic volume change during cycling have long been severely impeding the practical applications of Li metal as the ultimate anode. In this work, ultrathin MgF2 nanosheets encapsulated inside nitrogen-doped graphene-like hollow nanospheres (MgF2 NSs@NGHSs) are ingeniously fabricated to address these problems by a perfect combination of atomic layer deposition and chemical vapor deposition. The uniform and continuous Li-Mg solid-solution inner layer formed by the MgF2 nanosheets can reduce the nucleation overpotential and induce selective deposition of Li into the cavities of the NGHSs. Furthermore, the Li deposition behavior and mechanism of the hybrid host are comprehensively explored by in situ optical microscopy at the macroscopic level, in situ transmission electron microscopy at the microscopic level, and theoretical calculations at the atomic level, respectively. Benefiting from a synergistic modulation strategy of nanosheet seed-induced nucleation and Li-confined growth, the designed composite demonstrates an endurance of 590 cycles for asymmetric cells and a lifespan over 1330 h for corresponding symmetric cells. When applied in LiFePO4 full cells, it provides a reversible capacity of 90.6 mAh g-1 after 1000 cycles at 1 C.

11.
Small ; 15(3): e1804338, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30556378

ABSTRACT

In this work, hydroxyl-functionalized Mo2 C-based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2 SnC. The hydroxyl-functionalized surface of Mo2 C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs. Carbon nanotubes (CNTs) are further introduced into Mo2 C phase to enlarge the specific surface area of the composite, improve its electronic conductivity, and alleviate the volume change during discharging/charging. The strong surface-bound sulfur in the hierarchical Mo2 C-CNTs host can lead to a superior electrochemical performance in lithium-sulfur batteries. A large reversible capacity of ≈925 mAh g-1 is observed after 250 cycles at a current density of 0.1 C (1 C = 1675 mAh g-1 ) with good rate capability. Notably, the electrodes with high loading amounts of sulfur can also deliver good electrochemical performances, i.e., initial reversible capacities of ≈1314 mAh g-1 (2.4 mAh cm-2 ), ≈1068 mAh g-1 (3.7 mAh cm-2 ), and ≈959 mAh g-1 (5.3 mAh cm-2 ) at various areal loading amounts of sulfur (1.8, 3.5, and 5.6 mg cm-2 ) are also observed, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...