Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(D1): D714-D723, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37850635

ABSTRACT

Here, we present the manually curated Global Catalogue of Pathogens (gcPathogen), an extensive genomic resource designed to facilitate rapid and accurate pathogen analysis, epidemiological exploration and monitoring of antibiotic resistance features and virulence factors. The catalogue seamlessly integrates and analyzes genomic data and associated metadata for human pathogens isolated from infected patients, animal hosts, food and the environment. The pathogen list is supported by evidence from medical or government pathogenic lists and publications. The current version of gcPathogen boasts an impressive collection of 1 164 974 assemblies comprising 986 044 strains from 497 bacterial taxa, 4794 assemblies encompassing 4319 strains from 265 fungal taxa, 89 965 assemblies featuring 13 687 strains from 222 viral taxa, and 646 assemblies including 387 strains from 159 parasitic taxa. Through this database, researchers gain access to a comprehensive 'one-stop shop' that facilitates global, long-term public health surveillance while enabling in-depth analysis of genomes, sequence types, antibiotic resistance genes, virulence factors and mobile genetic elements across different countries, diseases and hosts. To access and explore the data and statistics, an interactive web interface has been developed, which can be accessed at https://nmdc.cn/gcpathogen/. This user-friendly platform allows seamless querying and exploration of the extensive information housed within the gcPathogen database.


Subject(s)
Databases, Genetic , Infections , Public Health , Humans , Genome, Bacterial/genetics , Genomics , Virulence Factors/genetics , Infections/microbiology , Infections/parasitology , Infections/virology , Animals
2.
J Ethnopharmacol ; 322: 117628, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38158101

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Piper longum L., a medicinal and food homologous herb, has a traditional history of use in treating gastrointestinal and neurological disorders. Piperine (PIP) the main alkaloid of P. longum, exists neuroprotective effects on various animal models of Parkinson's disease (PD). Nevertheless, the underlying mechanism, particularly the role of PIP in promoting gut-brain autophagy for α-Synuclein (α-Syn) degradation in PD, remains incompletely understood. AIM OF THE STUDY: To explore the role of PIP in regulating the gut-brain autophagy signaling pathway to reduce α-Syn levels in both the colon and substantia nigra (SN) of PD model rats. MATERIALS AND METHODS: Behavioral experiments were conducted to assess the impact of PIP on 6-hydroxydopamine (6-OHDA)-induced PD rats. The intestinal microbiome composition and intestinal metabolites were analyzed by metagenomics and GC-MS/MS. The auto-phagosomes were visualized by transmission electron microscopy. Immunohistochemistry, immunofluorescence, and western blotting were performed to assess the levels of tyrosine hydroxylase (TH), α-Syn, LC3II/LC3I, p62, and the PI3K/AKT/mTOR pathway in both the SN and colon of the rats. The pathway-related inhibitor and agonist were used to verify the autophagy mechanism in the SH-SY5Y cells overexpressing A53T mutant α-Syn (A53T-α-Syn). RESULTS: PIP improved autonomic movement and gastrointestinal dysfunctions, reduced α-Syn aggregation and attenuated the loss of dopaminergic neurons in 6-OHDA-induced PD rats. After oral administration of PIP, the radio of LC3II/LC3I increased and the expression of p62 was degraded, as well as the phosphorylation levels of PI3K, AKT and mTOR decreased in the SN and colon of rats. The effect of PIP on reducing A53T-α-Syn through the activation of the PI3K/AKT/mTOR-mediated autophagy pathway was further confirmed in A53T-α-Syn transgenic SH-SY5Y cells. This effect could be inhibited by the autophagy inhibitor bafilomycin A1 and the PI3K agonist 740 Y-P. CONCLUSIONS: Our findings suggested that PIP could protect neurons by activating autophagy to degrade α-Syn in the SN and colon, which were related to the suppression of PIP on the activation of PI3K/AKT/mTOR signaling pathway.


Subject(s)
Alkaloids , Benzodioxoles , Neuroblastoma , Parkinson Disease , Piperidines , Polyunsaturated Alkamides , Rats , Humans , Animals , Parkinson Disease/drug therapy , alpha-Synuclein/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Oxidopamine , Tandem Mass Spectrometry , Alkaloids/pharmacology , Alkaloids/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Brain/metabolism , Autophagy
3.
Genomics Proteomics Bioinformatics ; 20(2): 418-434, 2022 04.
Article in English | MEDLINE | ID: mdl-34214662

ABSTRACT

Klebsiella pneumoniae (K. pneumoniae) is an important pathogen that can cause severe hospital- and community-acquired infections. To systematically investigate its methylation features, we determined the whole-genome sequences of 14 K. pneumoniae strains covering varying serotypes, multilocus sequence types, clonal groups, viscosity/virulence, and drug resistance. Their methylomes were further characterized using Pacific Biosciences single-molecule real-time and bisulfite technologies. We identified 15 methylation motifs [13 N6-methyladenine (6mA) and two 5-methylcytosine (5mC) motifs], among which eight were novel. Their corresponding DNA methyltransferases were also validated. Additionally, we analyzed the genomic distribution of GATC and CCWGG methylation motifs shared by all strains, and identified differential distribution patterns of some hemi-/un-methylated GATC motifs, which tend to be located within intergenic regions (IGRs). Specifically, we characterized the in vivo methylation kinetics at single-base resolution on a genome-wide scale by simulating the dynamic processes of replication-mediated passive demethylation and MTase-catalyzed re-methylation. The slow methylation of the GATC motifs in the replication origin (oriC) regions and IGRs implicates the epigenetic regulation of replication initiation and transcription. Our findings illustrate the first comprehensive dynamic methylome map of K. pneumoniae at single-base resolution, and provide a useful reference to better understand epigenetic regulation in this and other bacterial species.


Subject(s)
Epigenesis, Genetic , Epigenome , Klebsiella pneumoniae/genetics , Kinetics , DNA Methylation
4.
Front Nutr ; 8: 664976, 2021.
Article in English | MEDLINE | ID: mdl-34712684

ABSTRACT

White kidney beans contain α-amylase inhibitors that can be used in diet for weight reduction. In this study, we investigated the potential of white kidney bean (phaseolus vulgaris L.) extract enriched in α-amylase inhibitor as a food additive in yogurt to regulate blood glucose in hyperglycemic animals. Five groups of C57BL/6J mice were fed for 8 weeks with standard chow diets, high-fat diets (HFD), or high-fat diets with supplement of α-amylase inhibitor in white kidney beans (P. vulgaris extract, PVE), yogurt (Y), and PVE added yogurt (YPVE), respectively. The HFD weakened glucose tolerance and caused insulin resistance in mice, and changed the characteristics of intestinal flora. The intervention of Y, PVE, and YPVE decreased blood glucose, insulin, hyperlipidemia, and inflammatory cytokine levels in mice fed with HFD. Moreover, the YPVE could regulate the components of host intestinal microbiota toward a healthy pattern, significantly increased the metabolic-related flora Corynebacterium, Granulicatella, and Streptococcus, while it decreased Paraprevotella and Allobaculum. Thus, YPVE markedly increased functions of "Amino Acid Metabolism," "Energy Metabolism," "Nucleotide Metabolism," and declined functions of "Glycan Biosynthesis and Metabolism." Consequently, YPVE could be developed as a new functional food because of its beneficial prebiotic properties in the metabolic syndrome.

5.
Front Cell Dev Biol ; 9: 687912, 2021.
Article in English | MEDLINE | ID: mdl-34222256

ABSTRACT

MicroRNAs in small extracellular vesicle (sEV-miRNAs) have been widely investigated as crucial regulated molecules secreted by tumor cells to communicate with surroundings. It is of great significance to explore the loading mechanism of sEV-miRNAs by tumor cells. Here, we comprehensively illustrated a reasoned loading pathway of batched tumor-promoting sEV-miRNAs in non-small cell lung cancer (NSCLC) cell line A549 with the application of a multi-omics method. The protein heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) was strictly selected as a powerful sEV-miRNA loading protein from miRNA-binding proteome and further verified through small RNA sequencing after hnRNPA1 silence. In terms of the mechanism, SUMOylated hnRNPA1 in sEVs was verified to control sEV-miRNA loading. Subsequently, as a scaffolding component of caveolae, caveolin-1 (CAV1) was detailedly demonstrated to assist the loading of SUMOylated hnRNPA1 and its binding miRNAs into sEVs. Inhibition of CAV1 significantly prevented SUMOylated hnRNPA1 from encapsulating into sEVs, resulting in less enrichment of sEV-miRNAs it loaded. Finally, we confirmed that hnRNPA1-loaded sEV-miRNAs could facilitate tumor proliferation and migration based on database analysis and cytological experiments. Our findings reveal a loading mechanism of batched tumor-promoting sEV-miRNAs, which may contribute to the selection of therapeutic targets for lung cancer.

6.
Cell Death Dis ; 12(7): 702, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262023

ABSTRACT

Acquired resistance to glucocorticoids (GCs) is an obstacle to the effective treatment of leukemia, but the molecular mechanisms of steroid insensitivity have not been fully elucidated. In this study, we established an acquired GC-resistant leukemia cell model and found a long noncoding RNA, HOTAIRM1, was overexpressed in the resistant cells by transcriptional profiling, and was higher expressed in patients with poor prognosis. The whole-genome-binding sites of HOTAIRM1 were determined by ChIRP-seq (chromatin isolation by RNA purification combined with sequencing) analysis. Further study determined that HOTAIRM1 bound to the transcriptional inhibitory region of ARHGAP18 and repressed the expression of ARHGAP18, which led to the increase of RHOA/ROCK1 signaling pathway and promoted GC resistance through antiapoptosis of leukemia cells. The inhibition of ROCK1 in GC-resistant cells could restore GCs responsiveness. In addition, HOTAIRM1 could also act as a protein sequester to prevent transcription factor AML1(acute myeloid leukemia 1) from binding to the regulatory region of ARHGAP18 by interacting with AML1. At last, we also proved AML1 could directly activate the expression of HOTAIRM1 through binding to the promoter of HOTAIRM1, which enriched the knowledge on the regulation of lncRNAs. This study revealed epigenetic causes of glucocorticoid resistance from the perspective of lncRNA, and laid a foundation for the optimization of glucocorticoid-based leukemia treatment strategy in clinic.


Subject(s)
Antineoplastic Agents/pharmacology , Core Binding Factor Alpha 2 Subunit/metabolism , Dexamethasone/pharmacology , Drug Resistance, Neoplasm , GTPase-Activating Proteins/metabolism , Glucocorticoids/pharmacology , Leukemia/drug therapy , MicroRNAs/metabolism , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Core Binding Factor Alpha 2 Subunit/genetics , Drug Resistance, Neoplasm/genetics , GTPase-Activating Proteins/genetics , Gene Expression Regulation, Leukemic , HEK293 Cells , Humans , Leukemia/enzymology , Leukemia/genetics , Leukemia/pathology , MicroRNAs/genetics , Protein Binding , Signal Transduction , rho-Associated Kinases/genetics , rhoA GTP-Binding Protein/genetics
7.
Drug Metab Rev ; 53(4): 604-617, 2021 11.
Article in English | MEDLINE | ID: mdl-33989097

ABSTRACT

The field of nanotechnology has allowed for increasing nanoparticle (NP) exposure to the male reproductive system. Certain NPs have been reported to have adverse consequences on male germ and somatic cells. Germ cells are the bridge between generations and are responsible for the transmission of genetic and epigenetic information to future generations. A number of NPs have negative impacts on male germ and somatic cells which could ultimately affect fertility or the ability to produce healthy offspring. These impacts are related to NP composition, modification, concentration, agglomeration, and route of administration. NPs can induce severe toxic effects on the male reproduction system after passing through the blood-testis barrier and ultimately damaging the spermatozoa. Therefore, understanding the impacts of NPs on reproduction is necessary. This review will provide a comprehensive overview on the current state of knowledge derived from the previous in vivo and in vitro research on effects of NPs on the male reproductive system at the genetic, cellular, and molecular levels.


Subject(s)
Nanoparticles , Genitalia, Male , Humans , Male , Nanoparticles/toxicity , Nanotechnology , Reproduction
8.
Sci Total Environ ; 762: 143058, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33127154

ABSTRACT

The avian colibacillosis outbreak is a disease that threatens public health, poultry production, and economic interests, even after antibiotic feed addition. It is known that avian pathogenic E. coli is a major pathogenic factor; however, the systemic characteristics of gut flora in disease samples and how pathogens grow remain unknown. To study these issues in depth, we used the whole microbial genome shotgun sequencing technique to compare entire microbes in diseased and healthy broiler chickens. We found that it was not only E. coli that increased substantially, but most pathogenic flora also increased significantly in diseased samples. Subsequently, we proved that aminoglycoside antibiotic resistance genes were mainly found in non-E. coli strains. This suggests that E. coli survival under antibiotic stress was due to the cooperative resistance from non-E. coli strains. Among all these increasing strains, attaching and effacing pathogens could damage host intestinal epithelial cells to release oxygen in the gut to make the microenvironment more adaptable for E. coli strains. Furthermore, we observed that the functions of the T4SS/T6SS secretion system were dramatically enhanced, which could help E. coli to compete and enlarge their living spaces. Ultimately, pathogenic E. coli accumulated to cause avian colibacillosis. This study provides a new insight into intestinal microecology in diseased individuals, which would propose new treatment options for avian colibacillosis from a metagenome perspective.


Subject(s)
Gastrointestinal Microbiome , Poultry Diseases , Animals , Anti-Bacterial Agents , Chickens , Escherichia coli , Humans , Virulence
9.
Parkinsonism Relat Disord ; 81: 84-88, 2020 12.
Article in English | MEDLINE | ID: mdl-33099131

ABSTRACT

INTRODUCTION: Increasing evidence shows that gut microbiota dysbiosis may play important roles in the occurrence and progression of Parkinson's disease (PD), but the findings are inconsistent. Besides, the effect of family environment on gut microbiota dysbiosis remains unclear. METHODS: We characterized the gut microbial compositions of 63 PD patients, 63 healthy spouses (HS) and 74 healthy people (HP) using 16S rRNA sequencing. Clinical phenotypes and microbial composition were analyzed comprehensively. RESULTS: There were markedly different microbial compositions among PD, HS and HP samples by alpha/beta diversity. We also found differential microbial compositions among Hoehn & Yahr stage/disease duration. Eight inflammation-associated microbial genera shared a continuously increase trend with increased Hoehn & Yahr stage and disease duration, indicating characteristic bacteria associated with deterioration in PD. Additionally, seven bacterial markers were identified for accurately differentiating PD patients from the controls (area under the curve [AUC]: 0.856). CONCLUSIONS: Our study shows altered gut microbiota in PD patients. Importantly, inflammation-associated microbial genera may play roles in PD progression. Differential microbial compositions in HS and HP samples demonstrate that the gut microbiota are also affected by family environment. Disease-associated metagenomics studies should consider the family environmental factor. Our research provides an important reference and improves the understanding of gut microbiota in PD patients.


Subject(s)
Dysbiosis/microbiology , Gastrointestinal Microbiome/genetics , Parkinson Disease/microbiology , Spouses , Aged , Female , Healthy Volunteers , Humans , Inflammation/microbiology , Male , Metagenomics , Middle Aged , Parkinson Disease/physiopathology , RNA, Ribosomal, 16S/genetics
10.
Microorganisms ; 8(10)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050530

ABSTRACT

Whole metagenome shotgun sequencing is a powerful approach to detect the functional potential of microbial communities. Currently, the read-based metagenomics profiling for established database (RBED) method is one of the two kinds of conventional methods for species and functional annotations. However, the databases, which are established based on test samples or specific reference genomes or protein sequences, limit the coverage of global microbial diversity. The other assembly-based metagenomics profiling for unestablished database (ABUD) method has a low utilization rate of reads, resulting in a lot of biological information loss. In this study, we proposed a new method, read-based metagenomics profiling for unestablished database (RBUD), based on Metagenome Database of Global Microorganisms (MDGM), to solve the above problems. To evaluate the accuracy and effectiveness of our method, the intestinal bacterial composition and function analyses were performed in both avian colibacillosis chicken cases and type 2 diabetes mellitus patients. Comparing to the existing methods, RBUD is superior in detecting proteins, percentage of reads mapping and ontological similarity of intestinal microbes. The results of RBUD are in better agreement with the classical functional studies on these two diseases. RBUD also has the advantages of fast analysis speed and is not limited by the sample size.

11.
Int J Med Sci ; 17(10): 1428-1438, 2020.
Article in English | MEDLINE | ID: mdl-32624699

ABSTRACT

Lung cancer has been the leading cause of cancer morbidity and mortality in recent years. Most lung cancers are often asymptomatic until advanced or metastatic stage. Therefore, looking for the diagnostic biomarker for early-stage lung cancer is quite significant. Circulating exosomal microRNAs (miRNAs) have been reported to be the diagnostic and prognostic markers of various cancers. Here, we obtained circulating exosomal miRNA repertoires of 7 early-stage lung adenocarcinoma patients including pre-operation and post-operation (LA-pre and LA-post) and 7 heathy controls (HCs) by next generation sequence (NGS) and selected miR-342-5p, miR-574-5p and miR-222-3p to validate in ampliative samples by reverse transcription-quantitative PCR (RT-qPCR). Circulating exosomal miR-342-5p, miR-574-5p and miR-222-3p not only significantly elevated in LA patients (n = 56) compared with HCs (n = 40), but also significantly decreased after tumor resection when analyzed 51 paired pre- and post-operation samples. Furthermore, miR-342-5p and miR-574-5p, but not miR-222-3p, had a significantly elevated expression level in carcinoma tissue compared with adjacent non-cancerous tissue (n = 8). The receiver operating characteristic (ROC) curve showed the area under the curve (AUC) of combined miR-342-5p and miR-574-5p was 0.813 (95% CI: 0.7249 to 0.9009) with sensitivity and specificity of 80.0% and 73.2% respectively. In summary, circulating exosomal miR-342-5p and miR-574-5p have potential to serve as novel diagnostic biomarkers for early-stage LA.


Subject(s)
Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Exosomes/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MicroRNAs/metabolism , Adenocarcinoma of Lung/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Blotting, Western , Exosomes/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Lung Neoplasms/genetics , Male , MicroRNAs/genetics , Middle Aged
12.
Proc Natl Acad Sci U S A ; 117(8): 4392-4399, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32041882

ABSTRACT

The pathogenesis of bipolar disorder (BD) has remained enigmatic, largely because genetic animal models based on identified susceptible genes have often failed to show core symptoms of spontaneous mood cycling. However, pedigree and induced pluripotent stem cell (iPSC)-based analyses have implicated that dysfunction in some key signaling cascades might be crucial for the disease pathogenesis in a subpopulation of BD patients. We hypothesized that the behavioral abnormalities of patients and the comorbid metabolic abnormalities might share some identical molecular mechanism. Hence, we investigated the expression of insulin/synapse dually functioning genes in neurons derived from the iPSCs of BD patients and the behavioral phenotype of mice with these genes silenced in the hippocampus. By these means, we identified synaptotagmin-7 (Syt7) as a candidate risk factor for behavioral abnormalities. We then investigated Syt7 knockout (KO) mice and observed nocturnal manic-like and diurnal depressive-like behavioral fluctuations in a majority of these animals, analogous to the mood cycling symptoms of BD. We treated the Syt7 KO mice with clinical BD drugs including olanzapine and lithium, and found that the drug treatments could efficiently regulate the behavioral abnormalities of the Syt7 KO mice. To further verify whether Syt7 deficits existed in BD patients, we investigated the plasma samples of 20 BD patients and found that the Syt7 mRNA level was significantly attenuated in the patient plasma compared to the healthy controls. We therefore concluded that Syt7 is likely a key factor for the bipolar-like behavioral abnormalities.


Subject(s)
Bipolar Disorder/metabolism , Bipolar Disorder/psychology , Synaptotagmins/metabolism , Adult , Animals , Behavior , Bipolar Disorder/blood , Bipolar Disorder/genetics , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mice , Mice, Knockout , Neurons/metabolism , Synaptotagmins/genetics , Young Adult
13.
Genomics Proteomics Bioinformatics ; 13(1): 17-24, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25724326

ABSTRACT

Exosomes are 40-100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently, mRNAs and microRNAs (miRNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal miRNAs, since the miRNA profiles of exosomes may differ from those of the parent cells. Exosomal miRNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal miRNAs, and briefly describe how exosomes and their miRNAs function in recipient cells. Finally, we will discuss the potential applications of these miRNA-containing vesicles in clinical settings.


Subject(s)
Exosomes/genetics , MicroRNAs/physiology , Neoplasms/genetics , RNA, Messenger/genetics , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...