Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 201(8): 2385-2391, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30224513

ABSTRACT

d-Glycero-ß-d-manno-heptose 1,7-biphosphate (ß-HBP) is a novel microbial-associated molecular pattern that triggers inflammation and thus has the potential to act as an immune modulator in many therapeutic contexts. To better understand the structure-activity relationship of this molecule, we chemically synthesized analogs of ß-HBP and tested their ability to induce canonical TIFA-dependent inflammation in human embryonic kidney cells (HEK 293T) and colonic epithelial cells (HCT 116). Of the analogs tested, only d-glycero-ß-d-manno-heptose 1-phosphate (ß-HMP) induced TIFA-dependent NF-κB activation and cytokine production in a manner similar to ß-HBP. This finding expands the spectrum of metabolites from the Gram-negative ADP-heptose biosynthesis pathway that can function as innate immune agonists and provides a more readily available agonist of the TIFA-dependent inflammatory pathway that can be easily produced by synthetic methods.


Subject(s)
Gram-Negative Bacteria/physiology , Heptoses/immunology , Immunity, Innate , Immunologic Factors/immunology , Inflammation/immunology , Mannose/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Phosphates/immunology , Pyrans/immunology , Adaptor Proteins, Signal Transducing/metabolism , HEK293 Cells , Heptoses/chemical synthesis , Humans , Immunization , Immunologic Factors/chemical synthesis , Inflammation/chemically induced , Mannose/chemical synthesis , Phosphates/chemical synthesis , Pyrans/chemical synthesis , Signal Transduction , Structure-Activity Relationship , Substrate Specificity
2.
mBio ; 9(4)2018 08 21.
Article in English | MEDLINE | ID: mdl-30131363

ABSTRACT

The innate immune system is the first line of defense against invasive fungal infections. As a consequence, many successful fungal pathogens have evolved elegant strategies to interact with host immune cells. For example, Candida albicans undergoes a morphogenetic switch coupled to cell wall remodeling upon phagocytosis by macrophages and then induces macrophage pyroptosis, an inflammatory cell death program. To elucidate the genetic circuitry through which C. albicans orchestrates this host response, we performed the first large-scale analysis of C. albicans interactions with mammalian immune cells. We identified 98 C. albicans genes that enable macrophage pyroptosis without influencing fungal cell morphology in the macrophage, including specific determinants of cell wall biogenesis and the Hog1 signaling cascade. Using these mutated genes, we discovered that defects in the activation of pyroptosis affect immune cell recruitment during infection. Examining host circuitry required for pyroptosis in response to C. albicans infection, we discovered that inflammasome priming and activation can be decoupled. Finally, we observed that apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization can occur prior to phagolysosomal rupture by C. albicans hyphae, demonstrating that phagolysosomal rupture is not the inflammasome activating signal. Taking the data together, this work defines genes that enable fungal cell wall remodeling and activation of macrophage pyroptosis independently of effects on morphogenesis and identifies macrophage signaling components that are required for pyroptosis in response to C. albicans infection.IMPORTANCECandida albicans is a natural member of the human mucosal microbiota that can also cause superficial infections and life-threatening systemic infections, both of which are characterized by inflammation. Host defense relies mainly on the ingestion and destruction of C. albicans by innate immune cells, such as macrophages and neutrophils. Although some C. albicans cells are killed by macrophages, most undergo a morphological change and escape by inducing macrophage pyroptosis. Here, we investigated the C. albicans genes and host factors that promote macrophage pyroptosis in response to intracellular fungi. This work provides a foundation for understanding how host immune cells interact with C. albicans and may lead to effective strategies to modulate inflammation induced by fungal infections.


Subject(s)
Candida albicans/genetics , Genes, Fungal , Host-Pathogen Interactions , Macrophages/microbiology , Pyroptosis , Animals , Candida albicans/pathogenicity , Female , High-Throughput Screening Assays , Immune Evasion , Macrophages/pathology , Mice , Mice, Inbred C57BL , Phagocytosis
3.
Cell Microbiol ; 20(1)2018 01.
Article in English | MEDLINE | ID: mdl-28886618

ABSTRACT

The neutrophil-specific innate immune receptor CEACAM3 functions as a decoy to capture Gram-negative pathogens, such as Neisseria gonorrhoeae, that exploit CEACAM family members to adhere to the epithelium. Bacterial binding to CEACAM3 results in their efficient engulfment and triggers activation of an nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-dependent inflammatory response by human neutrophils. Herein, we report that CEACAM3 cross-linking is not sufficient for induction of cytokine production and show that the inflammatory response induced by Neisseria gonorrhoeae infection is elicited by an integration of signals from CEACAM3 and toll-like receptors. Using neutrophils from a human CEACAM-expressing mouse line (CEABAC), we use a genetic approach to reveal a molecular bifurcation of the CEACAM3-mediated antimicrobial and inflammatory responses. Ex vivo experiments with CEABAC-Rac2-/- , CEABAC-Bcl10-/- , and CEABAC-Malt1-/- neutrophils indicate that these effectors are not necessary for gonococcal engulfment, yet all 3 effectors contribute to CEACAM3-mediated cytokine production. Interestingly, although Bcl10 and Malt1 are often inextricably linked, Bcl10 enabled synergy between toll-like receptor 4 and CEACAM3, whereas Malt1 did not. Together, these findings reveal an integration of the specific innate immune receptor CEACAM3 into the network of more conventional pattern recognition receptors, providing a mechanism by which the innate immune system can unleash its response to a relentless pathogen.


Subject(s)
B-Cell CLL-Lymphoma 10 Protein/genetics , Carcinoembryonic Antigen/immunology , Gonorrhea/immunology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Neisseria gonorrhoeae/immunology , Neutrophils/immunology , Toll-Like Receptor 4/immunology , Animals , Antigens, CD/immunology , B-Cell CLL-Lymphoma 10 Protein/immunology , Cell Adhesion Molecules/immunology , Cells, Cultured , GPI-Linked Proteins/immunology , Gonorrhea/microbiology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/immunology , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/immunology , RAC2 GTP-Binding Protein
4.
Carbohydr Res ; 450: 38-43, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28866079

ABSTRACT

d-glycero-ß-d-manno-heptose 1,7-biphosphate (HBP) is an enzymatic intermediate in the biosynthesis of the heptose component of lipopolysaccharide (LPS), and was recently revealed to be a pathogen-associated molecular pattern (PAMP) that allows detection of Gram-negative bacteria by the mammalian immune system. Cellular detection of HBP depends upon its stimulation of a cascade that leads to the phosphorylation and assembly of the TRAF-interacting with forkhead-associated domain protein A (TIFA), which activates the transcription factor NF-κB. In this note, an alternate chemical synthesis of HBP is described and its biological activity is established, providing pure material for further assessing and exploiting the biological activity of this compound.


Subject(s)
Heptoses/chemistry , Heptoses/chemical synthesis , Phosphates/chemistry , Phosphates/chemical synthesis , Cell Line, Tumor , Chemistry Techniques, Synthetic , Heptoses/pharmacology , Humans , NF-kappa B/metabolism , Phosphates/pharmacology
5.
Cell Rep ; 19(7): 1418-1430, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28514661

ABSTRACT

Intestinal epithelial cells (IECs) act as sentinels for incoming pathogens. Cytosol-invasive bacteria, such as Shigella flexneri, trigger a robust pro-inflammatory nuclear factor κB (NF-κB) response from IECs that is believed to depend entirely on the peptidoglycan sensor NOD1. We found that, during Shigella infection, the TRAF-interacting forkhead-associated protein A (TIFA)-dependent cytosolic surveillance pathway, which senses the bacterial metabolite heptose-1,7-bisphosphate (HBP), functions after NOD1 to detect bacteria replicating free in the host cytosol. Whereas NOD1 mediated a transient burst of NF-κB activation during bacterial entry, TIFA sensed HBP released during bacterial replication, assembling into large signaling complexes to drive a dynamic inflammatory response that reflected the rate of intracellular bacterial proliferation. Strikingly, IECs lacking TIFA were unable to discriminate between proliferating and stagnant intracellular bacteria, despite the NOD1/2 pathways being intact. Our results define TIFA as a rheostat for intracellular bacterial replication, escalating the immune response to invasive Gram-negative bacteria that exploit the host cytosol for growth.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytosol/metabolism , Immunity, Innate , Intracellular Space/microbiology , Shigella flexneri/growth & development , Signal Transduction , HeLa Cells , Humans , Nod1 Signaling Adaptor Protein/metabolism , Phosphates/metabolism , Vacuoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...