Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 140: 108957, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37467901

ABSTRACT

Previous studies have shown that GIGYF2 plays multiple roles, but its overall biological function remains poor-defined. Here we clearly demonstrated that zebrafish (Danio rerio) GIGYF2 has GYF domain and gigyf2 mainly expressed in caudal fin, brain, eyes and testis in a tissue specific manner, and was most abundant in brain and testis. GYF domain of GIGYF2 was a peptidoglycan (PGN), lipopolysaccharide (LPS)- and lipoteichoic acid (LTA)- binding protein abundantly stored in the testis/embryos of zebrafish, acting not only as a pattern recognition receptor, but also as an effector molecule, capable of inhibiting the growth of gram-positive and -negative bacteria. Furthermore, we reveal that the residues of GIGYF2 positioned at 582-601 and 848-865 were indispensable for GIGYF2 antibacterial activity. Additionally, site-directed mutation could improve antibacterial activities. Collectively, our results indicate that zebrafish GYF domain of GIGYF2 recognize bacterial characteristic molecules PGN, LPS and LTA, and directly kill bacteria as an antibacterial effector. This work also provides another angle for understanding the biological roles of GIGYF2.


Subject(s)
Lipopolysaccharides , Zebrafish , Male , Animals , Lipopolysaccharides/pharmacology , Zebrafish Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism
2.
Fish Shellfish Immunol ; 127: 925-932, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35863537

ABSTRACT

PLEKHF2 proteins are widespread in animals, but their functions and mechanisms remain poorly defined. Here we clearly demonstrate that PLEKHF2 is a newly identified present abundantly in the eggs/embryos of zebrafish. We also show that recombinant PLEKHF2 acts as a pattern recognition receptor capable of identifying the bacterial signature molecule PGN, LPS, and LTA, binding the bacteria, and functions as an antibacterial effector directly killing the bacteria. In brief, these results indicate that PLEKHF2 is an antibacterial protein, a novel role assigned to PLEKHF2 proteins.


Subject(s)
Zebrafish Proteins , Zebrafish , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Lipopolysaccharides/metabolism , Receptors, Pattern Recognition , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...