Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.107
Filter
1.
Am J Med Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825074

ABSTRACT

BACKGROUND: Superoxide dismutase 1 (SOD1) is one of the most important participants of antioxidant enzyme system in biological system. Previous studies have found that SOD1 is associated with many inflammatory diseases. The goal of this study was to assess the associations of serum SOD1 with the severity and prognosis in community-acquired pneumonia (CAP) patients by a prospective cohort study. METHODS: CAP patients were enrolled from the Second Affiliated Hospital of Anhui Medical University. Peripheral blood samples were gathered. The level of serum SOD1 was detected through enzyme linked immunosorbent assay (ELISA). Clinical characteristics and demographic information were analyzed. RESULTS: The level of serum SOD1 was gradually upregulated with elevated CAP severity scores. Spearman correlation coefficient or Pearson rank correlation analyses indicated that serum SOD1 was strongly connected with many clinical parameters among CAP patients. Further linear and logistic regression analyses found that the level of serum SOD1 was positively associated with CRB-65, CURB-65, SMART-COP, and CURXO scores among CAP patients. Moreover, serum higher SOD1 at admission substantially increased the risks of ICU admission, mechanical ventilation, vasoactive agent usage, death, and longer hospital stays during hospitalization. Serum SOD1 level combination with CAP severity scores elevated the predictive abilities for severity and death compared with alone serum SOD1 and CAP severity scores in CAP patients during hospitalization. CONCLUSION: The level of serum SOD1 is positively associated with the severity and poor prognosis in CAP patients, suggesting that SOD1 is implicated in the initiation and progression of CAP. Serum SOD1 may be regarded as a biomarker to appraise the severity and prognosis for CAP patients.

2.
Sci Rep ; 14(1): 12621, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824201

ABSTRACT

Anaplasma and Ehrlichia are tick-borne bacterial pathogens that cause anaplasmoses and ehrlichioses in humans and animals. In this study, we examined the prevalence of Anaplasma and Ehrlichia species in ticks and domesticated animals in Suizhou County, Hubei Province in the central China. We used PCR amplification and DNA sequencing of the 16S rRNA, groEL, and gltA genes to analyze. We collected 1900 ticks, including 1981 Haemaphysalis longicornis and 9 Rhipicephalus microplus, 159 blood samples of goats (n = 152), cattle (n = 4), and dogs (n = 3) from May to August of 2023. PCR products demonstrated that Anaplasma bovis, Anaplasma capra, and an Ehrlichia species were detected in the H. longicornis with the minimum infection rates (MIR) of 1.11%, 1.32%, and 0.05%, respectively; A. bovis, A. capra, and unnamed Anaplasma sp. were detected in goats with an infection rate of 26.31%, 1.31% and 1.97%, respectively. Anaplasma and Ehrlichia species were not detected from cattle, dogs and R. microplus ticks. The genetic differences in the groEL gene sequences of the Anaplasma in the current study were large, whereas the 16S rRNA and gltA gene sequences were less disparate. This study shows that ticks and goats in Suizhou County, Hubei Province carry multiple Anaplasma species and an Ehrlichia species, with relatively higher infection rate of A. bovis in goats. Our study indicates that multiple Anaplasma and Ehrlichia species exist in ticks and goats in the central China with potential to cause human infection.


Subject(s)
Anaplasma , Anaplasmosis , Animals, Domestic , Ehrlichia , Genetic Variation , Goats , RNA, Ribosomal, 16S , Animals , Anaplasma/genetics , Anaplasma/isolation & purification , China/epidemiology , Ehrlichia/genetics , Ehrlichia/isolation & purification , Goats/microbiology , Dogs , Cattle , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Prevalence , Animals, Domestic/microbiology , RNA, Ribosomal, 16S/genetics , Ticks/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/microbiology , Phylogeny
3.
BMC Nurs ; 23(1): 307, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702727

ABSTRACT

BACKGROUND: Family-centered empowerment programs have been widely used in the pediatric field. Therefore, the current study investigated the effectiveness of family empowerment programs on caregiving ability and adverse mood among caregivers of children with acute leukemia. OBJECTIVE: To evaluate the effect of a family empowerment program on the caregiving ability and adverse mood of caregivers of children with acute leukemia. METHODS: Sixty-eight children with acute leukemia and their family caregivers admitted to our hospital were selected for the study. The control group received routine care during hospitalization, and the family empowerment program was implemented in the intervention group to compare the changes in caregiving capacity (FCTI), illness uncertainty (PPUS) and anxiety(SAS)of the caregivers of the two groups. RESULTS: After 8 weeks of intervention, the FCTI score of the intervention group was significantly lower than that of the control group (P < 0.001), and the difference between the scores before and after the intervention was statistically significant (P < 0.001); the PPUS score of the intervention group was significantly lower than that of the control group (P < 0.05), and the difference between the scores before and after the intervention was statistically significant (P < 0.001); the SAS score of the intervention group was lower than that of the control group after intervention(P < 0.05), and the score difference before and after intervention was statistically significant (P < 0.001). CONCLUSION: Family empowerment program is beneficial in improving caregiving capacity and reducing disease uncertainty and anxiety among caregivers of children with acute leukemia. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300073476 2023-07-12 Retrospectively registered.

4.
Nat Commun ; 15(1): 3763, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704386

ABSTRACT

Under long-standing threat of seasonal influenza outbreaks, it remains imperative to understand the drivers of influenza dynamics which can guide mitigation measures. While the role of absolute humidity and temperature is extensively studied, the possibility of ambient ozone (O3) as an environmental driver of influenza has received scant attention. Here, using state-level data in the USA during 2010-2015, we examined such research hypothesis. For rigorous causal inference by evidence triangulation, we applied 3 distinct methods for data analysis: Convergent Cross Mapping from state-space reconstruction theory, Peter-Clark-momentary-conditional-independence plus as graphical modeling algorithms, and regression-based Generalised Linear Model. The negative impact of ambient O3 on influenza activity at 1-week lag is consistently demonstrated by those 3 methods. With O3 commonly known as air pollutant, the novel findings here on the inhibition effect of O3 on influenza activity warrant further investigations to inform environmental management and public health protection.


Subject(s)
Air Pollutants , Influenza, Human , Ozone , Humans , Influenza, Human/epidemiology , Influenza, Human/transmission , Influenza, Human/virology , United States/epidemiology , Seasons , Disease Outbreaks , Algorithms
5.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727360

ABSTRACT

Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of "structure optimization design", environment-friendly composite beads (named SA/PASP/RE) with excellent adsorption performance and recyclability were rationally constructed through a green ionic crosslinking route, using the completely green biopolymer sodium alginate (SA), sodium salt of polyaspartic acid (PASP), and the natural nanoclay rectorite (RE) as starting materials. The nano-layered RE was embedded in the polymer matrix to prevent the polymer chain from becoming over-entangled so that more adsorption sites inside the polymer network were exposed, which effectively improved the mass transfer efficiency of the adsorbent and the removal rate of contaminants. The composite beads embedded with 0.6% RE showed high adsorption capacities of 211.78, 197.13, and 195.69 mg/g for Pb(II) and 643.00, 577.80, and 567.10 mg/g for methylene blue (MB) in Yellow River water, Yangtze River water, and tap water, respectively. And the beads embedded with 43% RE could efficiently adsorb Pb(II) and MB with high capacities of 187.78 mg/g and 586.46 mg/g, respectively. This study provides a new route to design and develop a green, cost-effective, and efficient adsorbent for the decontamination of wastewater.

6.
J Multidiscip Healthc ; 17: 2371-2387, 2024.
Article in English | MEDLINE | ID: mdl-38770171

ABSTRACT

Among cardiovascular diseases, hypertension is the most important risk factor for morbidity and mortality worldwide, and its pathogenesis is complex, involving genetic, dietary and environmental factors. The characteristics of the gut microbiota can vary in response to increased blood pressure (BP) and influence the development and progression of hypertension. This paper describes five aspects of the relationship between hypertension and the gut microbiota, namely, the different types of gut microbiota, metabolites of the gut microbiota, sympathetic activation, gut-brain interactions, the effects of exercise and dietary patterns and the treatment of the gut microbiota through probiotics, faecal microbiota transplantation (FMT) and herbal remedies, providing new clues for the future prevention of hypertension. Diet, exercise and traditional Chinese medicine may contribute to long-term improvements in hypertension, although the effects of probiotics and FMT still need to be validated in large populations.

7.
Int J Surg ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775550

ABSTRACT

BACKGROUND: Drug-eluting bead transarterial chemoembolization (DEB-TACE) has shown efficacy for treating hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT). However, whether DEB-TACE is superior to conventional TACE (cTACE) remains unclear. OBJECTIVE: This randomized controlled trial aimed to compare the efficacy and safety of DEB-TACE versus cTACE in treating HCC with PVTT. METHODS: The study was conducted in a tertiary care center in Southeast China. HCC patients with PVTT were randomized at a 1:1 ratio to the DEB-TACE or cTACE groups. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were overall survival (OS) and incidence of adverse events (AEs). An independent review committee assessed the radiologic response according to the modified Response Evaluation Criteria in Solid Tumors (mRECIST). AEs were assessed by the Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Systemic therapies were not limited. RESULTS: Between September 2018, and July 2020, 163 patients were randomized to undergo DEB-TACE (n=82) or cTACE (n=81). Nine patients were excluded, and 154 patients were included in the final analysis; the median age was 55 years (range, 24-78 y), and 140 (90.9%) were male. The median PFS in the DEB-TACE group was 6.0 months (95% CI, 5.0 to 10.0) versus 4.0 months (95% CI, 3.0 to 5.0) in the cTACE group (hazard ratio, 0.63; 95% CI, 0.42 to 0.95; P=0.027). The DEB-TACE group showed a higher response rate (51[66.2%] vs. 36 [46.8%]; P=0.0015) and a longer median OS (12.0 months [95% CI, 9.0 to 16.0] vs. 8.0 months [95% CI, 7.0 to 11.0], P=0.039) than the cTACE group. Multivariate analysis showed that the treatment group, ALBI score, distant metastasis and additional TKIs were the four independent prognostic factors correlated with PFS. In addition, the treatment group, PVTT group and combined with surgery were independently correlated with OS. AEs were similar in the two groups, and postembolization syndrome was the most frequent AEs. CONCLUSION: DEB-TACE is superior to cTACE in treating HCC patients with PVTT due to the improved PFS and OS with an acceptable safety profile and may become a promising treatment strategy for HCC patients with PVTT. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR1800018035.

8.
J Hematol Oncol ; 17(1): 36, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783389

ABSTRACT

Oncolytic viruses (OVs) offer a novel approach to treat solid tumors; however, their efficacy is frequently suboptimal due to various limiting factors. To address this challenge, we engineered an OV containing targets for neuron-specific microRNA-124 and Granulocyte-macrophage colony-stimulating factor (GM-CSF), significantly enhancing its neuronal safety while minimally compromising its replication capacity. Moreover, we identified PARP1 as an HSV-1 replication restriction factor using genome-wide CRISPR screening. In models of glioblastoma (GBM) and triple-negative breast cancer (TNBC), we showed that the combination of OV and a PARP inhibitor (PARPi) exhibited superior efficacy compared to either monotherapy. Additionally, single-cell RNA sequencing (scRNA-seq) revealed that this combination therapy sensitized TNBC to immune checkpoint blockade, and the incorporation of an immune checkpoint inhibitor (ICI) further increased the survival rate of tumor-bearing mice. The combination of PARPi and ICI synergistically enhanced the ability of OV to establish durable tumor-specific immune responses. Our study effectively overcomes the inherent limitations of OV therapy, providing valuable insights for the clinical treatment of TNBC, GBM, and other malignancies.


Subject(s)
Oncolytic Virotherapy , Oncolytic Virotherapy/methods , Animals , Humans , Mice , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Glioblastoma/therapy , Glioblastoma/genetics , Oncolytic Viruses/genetics , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/genetics , Female , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Herpesvirus 1, Human/genetics , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , MicroRNAs/genetics , Xenograft Model Antitumor Assays , CRISPR-Cas Systems
9.
Commun Biol ; 7(1): 659, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811689

ABSTRACT

Propionic acidemia (PA), resulting from Pcca or Pccb gene mutations, impairs propionyl-CoA metabolism and induces metabolic alterations. While speculation exists that fasting might exacerbate metabolic crises in PA patients by accelerating the breakdown of odd-chain fatty acids and amino acids into propionyl-CoA, direct evidence is lacking. Our investigation into the metabolic effects of fasting in Pcca-/-(A138T) mice, a PA model, reveals surprising outcomes. Propionylcarnitine, a PA biomarker, decreases during fasting, along with the C3/C2 (propionylcarnitine/acetylcarnitine) ratio, ammonia, and methylcitrate. Although moderate amino acid catabolism to propionyl-CoA occurs with a 23-h fasting, a significant reduction in microbiome-produced propionate and increased fatty acid oxidation mitigate metabolic alterations by decreasing propionyl-CoA synthesis and enhancing acetyl-CoA synthesis. Fasting-induced gluconeogenesis further facilitates propionyl-CoA catabolism without changing propionyl-CoA carboxylase activity. These findings suggest that fasting may alleviate metabolic alterations in Pcca-/-(A138T) mice, prompting the need for clinical evaluation of its potential impact on PA patients.


Subject(s)
Fasting , Methylmalonyl-CoA Decarboxylase , Mutation , Animals , Mice , Methylmalonyl-CoA Decarboxylase/metabolism , Methylmalonyl-CoA Decarboxylase/genetics , Propionic Acidemia/genetics , Propionic Acidemia/metabolism , Male , Mice, Knockout , Disease Models, Animal , Mice, Inbred C57BL , Acyl Coenzyme A/metabolism
10.
Nat Commun ; 15(1): 4347, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773146

ABSTRACT

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Astrocytes , Depressive Disorder, Major , Mice, Knockout , Animals , Astrocytes/metabolism , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Mice , Humans , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/genetics , Depressive Disorder, Major/pathology , Male , Female , Disease Models, Animal , Mice, Inbred C57BL , Neurons/metabolism , Stress, Psychological/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/genetics , Behavior, Animal , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Depression/metabolism , Depression/genetics , Adult , Synaptic Transmission , Middle Aged
11.
Orphanet J Rare Dis ; 19(1): 145, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575986

ABSTRACT

BACKGROUND: Traditional biochemical screening for neonatal inherited metabolic diseases has high false-positive rates and low positive predictive values, which are not conducive to early diagnosis and increase parents' anxiety. This study analysed the relationship between gene variant carriers and their biochemical indicators in traditional biochemical screening, aiming to find explanations for false positives in newborns. RESULTS: This retrospective study included 962 newborns. Newborns underwent traditional biochemical screening at birth using blood staining and genomic sequencing of their stored blood staining using the NeoSeq Pro panel, which was able to detect 154 pathogenic genes and 86 diseases. A total of 632 newborns were carriers of gene variants. 56% of congenital hypothyroidism carriers had higher thyroid-stimulating hormone levels than normal newborns. Abnormal biochemical indices were detected in 71% of carriers of organic acid metabolic diseases, 69% of carriers of amino acid metabolic diseases, and 85% of carriers of fatty acid ß oxidation disorders. In carriers associated with organic acid metabolic diseases, the propionylcarnitine (C3), C3/acetylcarnitine (C2), and methylmalonylcarnitine (C4DC) + 3-hydroxyisovalerylcarnitine (C5OH) levels were higher than those in non-carriers (C3: 4.12 vs. 1.66 µmol/L; C3/C2: 0.15 vs. 0.09; C4DC + C5OH: 0.22 vs. 0.19 µmol/L). In carriers associated with amino acid metabolic diseases, phenylalanine levels were higher than those in non-carriers (68.00 vs. 52.05 µmol/L). For carriers of fatty acid ß oxidation disorders, butyrylcarnitine levels were higher than those in non-carriers (0.31 vs. 0.21 µmol/L), while the free carnitine levels were lower than those in non-carriers (14.65 vs. 21.87 µmol/L). There was a higher occurrence of carriers among newborns who received false-positive results for amino acid metabolic diseases compared to those who received negative results (15.52% vs. 6.71%). Similarly, there was a higher occurrence of carriers among newborns who received false-positive results for fatty acid ß oxidation disorders compared to those who received negative results (28.30% vs. 7.29%). CONCLUSIONS: This study showed that the carriers comprised a large number of newborns. Carriers had abnormal biochemical indicators compared with non-carriers, which could explain the false-positive rate for newborns using traditional newborn biochemical screening, especially in amino acid metabolic and fatty acid ß oxidation disorders.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Tandem Mass Spectrometry , Infant, Newborn , Humans , Retrospective Studies , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acids , Neonatal Screening/methods , Fatty Acids
12.
Nat Commun ; 15(1): 2834, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565846

ABSTRACT

The circadian clock regulates animal physiological activities. How temperature reorganizes circadian-dependent physiological activities remains elusive. Here, using in-vivo two-photon imaging with the temperature control device, we investigated the response of the Drosophila central circadian circuit to temperature variation and identified that DN1as serves as the most sensitive temperature-sensing neurons. The circadian clock gate DN1a's diurnal temperature response. Trans-synaptic tracing, connectome analysis, and functional imaging data reveal that DN1as bidirectionally targets two circadian neuronal subsets: activity-related E cells and sleep-promoting DN3s. Specifically, behavioral data demonstrate that the DN1a-E cell circuit modulates the evening locomotion peak in response to cold temperature, while the DN1a-DN3 circuit controls the warm temperature-induced nocturnal sleep reduction. Our findings systematically and comprehensively illustrate how the central circadian circuit dynamically integrates temperature and light signals to effectively coordinate wakefulness and sleep at different times of the day, shedding light on the conserved neural mechanisms underlying temperature-regulated circadian physiology in animals.


Subject(s)
Circadian Clocks , Drosophila Proteins , Animals , Circadian Rhythm/physiology , Temperature , Sleep/physiology , Drosophila , Circadian Clocks/physiology , Drosophila Proteins/genetics , Drosophila melanogaster/physiology
13.
RSC Adv ; 14(19): 13685-13693, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665506

ABSTRACT

Controlled aggregation is of great significance in designing nanodevices with high electrochemical performance. In this study, an in situ aggregation strategy with cyclodextrin polymer (CDP) was employed to prepare polyaniline (PANI)/MXene (MX) composites. MXene served as a two-dimensional structure template. Due to supramolecular interactions, CDP could be controllably modified with PANI layers, effectively preventing the self-polymerization of PANI. As a result, this integration facilitated a more uniform growth of PANI on MXene and further improved the capacitance performance of CDP-MX/PA. In a three-electrode system, the specific capacitance of MX/PA at 1 A g-1 was 460.8 F g-1, which increased to 523.8 F g-1 after CDP-induced growth. CDP-MX/PA exhibited a high energy density of 27.7 W h kg-1 at a power density of 700 W kg-1. This suggests that the synthetic strategy employed in this study holds promise in providing robust support for the preparation of high-performance energy-storage device.

14.
Ecotoxicol Environ Saf ; 276: 116301, 2024 May.
Article in English | MEDLINE | ID: mdl-38599159

ABSTRACT

To study the heavy metal accumulation and its impact on insect exterior and chromosome morphology, and reveal the molecular mechanism of insects adapting to long-term heavy metal compound pollution habitats, this study, in the Diaojiang river basin, which has been polluted by heavy metals(HMs) for nearly a thousand years, two Eucriotettix oculatus populations was collected from mining and non-mining areas. It was found that the contents of 7 heavy metals (As, Cd, Pb, Zn, Cu, Sn, Sb) in E. oculatus of the mining area were higher than that in the non-mining 1-11 times. The analysis of morphology shows that the external morphology, the hind wing type and the chromosomal morphology of E. oculatus are significant differences between the two populations. Based on the heavy metal accumulation,morphological change, and stable population density, it is inferred that the mining area population has been affected by heavy metals and has adapted to the environment of heavy metals pollution. Then, by analyzing the transcriptome of the two populations, it was found that the digestion, immunity, excretion, endocrine, nerve, circulation, reproductive and other systems and lysosomes, endoplasmic reticulum and other cell structure-related gene expression were suppressed. This shows that the functions of the above-mentioned related systems of E. oculatus are inhibited by heavy metal stress. However, it has also been found that through the significant up-regulation of genes related to the above system, such as ATP2B, pepsin A, ubiquitin, AQP1, ACOX, ATPeV0A, SEC61A, CANX, ALDH7A1, DLD, aceE, Hsp40, and catalase, etc., and the down-regulation of MAPK signalling pathway genes, can enhanced nutrient absorption, improve energy metabolism, repair damaged cells and degrade abnormal proteins, maintain the stability of cells and systems, and resist heavy metal damage so that E. oculatus can adapt to the environment of heavy metal pollution for a long time.


Subject(s)
Grasshoppers , Metals, Heavy , Water Pollutants, Chemical , Animals , Metals, Heavy/toxicity , Water Pollutants, Chemical/toxicity , Grasshoppers/drug effects , Grasshoppers/anatomy & histology , Environmental Monitoring/methods , Mining , China , Adaptation, Physiological/drug effects , Transcriptome/drug effects , Rivers/chemistry
15.
ChemSusChem ; : e202400424, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682649

ABSTRACT

High-performance rechargeable aluminum-sulfur batteries (RASB) have great potential for various applications owing to their high theoretical capacity, abundant sulfur resources, and good safety. Nevertheless, the practical application of RASB still faces several challenges, including the polysulfide shuttle phenomenon and low sulfur utilization efficiency. Here, we first developed a synergistic copper heterogeneous metal oxide MoO2 derived from polymolybdate-based metal-organic framework as an efficient catalyst for mitigating polysulfide diffusion. This composite enhances sulfur utilization and electrical conductivity of the cathode. DFT calculations and experimental results reveal the catalyst Cu/MoO2@C not only effectively anchors aluminum polysulfides (AlPSs) to mitigate the shuttle effect, but also significantly promotes the catalytic conversion of AlPSs on the sulfur cathode side during charging and discharging. The unique nanostructure contains abundant electrocatalytic active sites of oxide nanoparticles and Cu clusters, resulting in excellent electrochemical performance. Consequently, the established RASB exhibits an initial capacity of 875 mAh g-1 at 500 mA g-1 and maintains a capacity of 967 mAh g-1 even at a high temperature of 50 °C.

16.
J Proteomics ; 300: 105177, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38631426

ABSTRACT

Tuberculosis (TB) is a serious cause of infectious death worldwide. Recent studies have reported that about 30% of the Mtb proteome was modified post-translationally, indicating that their functions are essential for drug resistance, mycobacterial survival, and pathogenicity. Among them, lysine acetylation, reversibly regulated by acetyltransferase and deacetylase, has important roles involved in energy metabolism, cellular adaptation, and protein interactions. However, the substrate and biological functions of these two important regulatory enzymes remain unclear. Herein, we utilized the non-pathogenic M. smegmatis strain as a model and systematically investigated the dynamic proteome changes in response to the overexpressing of MsKat/MsCobB in mycobacteria. A total of 4179 proteins and 1236 acetylated sites were identified in our data. Further analysis of the dynamic changes involved in proteome and acetylome showed that MsKat/MsCobB played a regulatory role in various metabolic pathways and nucleic acid processes. After that, the quantitative mass spectrometric method was utilized and proved that the AMP-dependent synthetase, Citrate synthase, ATP-dependent specificity component of the Clp protease, and ATP-dependent DNA/RNA helicases were identified to be the substrates of MsKat. Overall, our study provided an important resource underlying the substrates and functions of the acetylation regulatory enzymes in mycobacteria. SIGNIFICANCE: In this study, we systematically analyzed the dynamic molecular changes in response to the MsKat/MsCobB overexpression in mycobacteria at proteome and lysine acetylation level by using a TMT-based quantitative proteomic approach. Pathways related with glycolysis, degradation of branched chain amino acids, phosphotransferase system were affected after disturbance of the two regulates enzymes involved in lysine acetylation. We also proved that AMP-dependent synthetase Clp protease, ATP-dependent DNA/RNA helicases and citrate synthase was the substrate of MsKat according to our proteomic data and biological validation. Together, our study underlined the substrates and functions of the acetylation regulatory enzymes in mycobacteria.


Subject(s)
Bacterial Proteins , Lysine Acetyltransferases , Mycobacterium smegmatis , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/metabolism , Bacterial Proteins/metabolism , Lysine Acetyltransferases/metabolism , Acetylation , Proteome/metabolism , Substrate Specificity , Lysine/metabolism
17.
Cell ; 187(10): 2359-2374.e18, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38653240

ABSTRACT

Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis.


Subject(s)
Adipose Tissue, Brown , Amino Acids, Branched-Chain , Insulin Resistance , Mitochondria , Nitrogen , Thermogenesis , Adipose Tissue, Brown/metabolism , Animals , Amino Acids, Branched-Chain/metabolism , Mice , Nitrogen/metabolism , Mitochondria/metabolism , Male , Humans , Energy Metabolism , Mice, Inbred C57BL , Oxidative Stress , Insulin/metabolism , Diet, High-Fat , Adipocytes, Brown/metabolism , Signal Transduction
18.
Eur J Med Chem ; 269: 116311, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38508118

ABSTRACT

Four series of imidazoles (15a-g, 20c, and 20d) and thiazoles (18a-g, 22a, and 22b) possessing various amino acids were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. Among them, compounds 15g and 18c showed the highest inhibitory activity against ALK5, with IC50 values of 0.017 and 0.025 µM, respectively. Compounds 15g and 18c efficiently inhibited extracellular matrix (ECM) deposition in TGF-ß-induced hepatic stellate cells (HSCs), and eventually suppressed HSC activation. Moreover, compound 15g showed a good pharmacokinetic (PK) profile with a favorable half-life (t1/2 = 9.14 h). The results indicated that these compounds exhibited activity targeting ALK5 and may have potential in the treatment of liver fibrosis; thus they are worthy of further study.


Subject(s)
Amino Acids , Thiazoles , Humans , Thiazoles/pharmacology , Amino Acids/pharmacology , Liver Cirrhosis/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Imidazoles/pharmacology
19.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(3): 348-355, 2024 Mar 15.
Article in Chinese | MEDLINE | ID: mdl-38500430

ABSTRACT

Objective: To explore the effect of NaOH on the surface morphology of three-dimensional (3D) printed poly- L-lactic acid (PLLA) mesh scaffolds. Methods: The 3D printed PLLA mesh scaffolds were prepared by fused deposition molding technology, then the scaffold surfaces were etched with the NaOH solution. The concentrations of NaOH solution were 0.01, 0.1, 0.5, 1.0, and 3.0 mol/L, and the treatment time was 1, 3, 6, 9, and 12 hours, respectively. There were a total of 25 concentration and time combinations. After treatment, the microstructure, energy spectrum, roughness, hydrophilicity, compressive strength, as well as cell adhesion and proliferation of the scaffolds were observed. The untreated scaffolds were used as a normal control. Results: 3D printed PLLA mesh scaffolds were successfully prepared by using fused deposition molding technology. After NaOH etching treatment, a rough or micro porous structure was constructed on the surface of the scaffold, and with the increase of NaOH concentration and treatment time, the size and density of the pores increased. The characterization of the scaffolds by energy dispersive spectroscopy showed that the crystal contains two elements, Na and O. The surface roughness of NaOH treated scaffolds significantly increased ( P<0.05) and the contact angle significantly decreased ( P<0.05) compared to untreated scaffolds. There was no significant difference in compressive strength between the untreated scaffolds and treated scaffolds under conditions of 0.1 mol/L/12 h and 1.0 mol/L/3 h ( P>0.05), while the compression strength of the other treated scaffolds were significantly lower than that of the untreated scaffolds ( P<0.05). After co-culturing the cells with the scaffold, NaOH treatment resulted in an increase in the number of cells on the surface of the scaffold and the spreading area of individual cells, and more synapses extending from adherent cells. Conclusion: NaOH treatment is beneficial for increasing the surface hydrophilicity and cell adhesion of 3D printed PLLA mesh scaffolds.


Subject(s)
Surgical Mesh , Tissue Scaffolds , Tissue Scaffolds/chemistry , Sodium Hydroxide , Cells, Cultured , Polyesters/chemistry , Lactic Acid , Printing, Three-Dimensional , Tissue Engineering
20.
Brain Res ; 1832: 148849, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38452844

ABSTRACT

The present study focused on whether hypoxia-inducible factor-1alpha (HIF-1α) and platelet-derived factor-beta (PDGF-ß) are involved in the crosstalk between brain microvascular endothelial cells (BMECs) and brain vascular pericytes (BVPs) under ischaemic-hypoxic conditions. Mono-cultures or co-cultures of BVPs and BMECs were made for the construction of the blood-brain barrier (BBB) model in vitro and then exposed to control and oxygen-glucose deprivation (OGD) conditions. BBB injury was determined by assessing the ability, apoptosis, and migration of BVPs and the transendothelial electrical resistance and horseradish peroxidase permeation of BMECs. Relative mRNA and protein levels of HIF-1α and PDGF-ß, as well as tight junction proteins ZO-1 and claudin-5 were analyzed by western blotting, reverse transcription quantitative PCR, and/or immunofluorescence staining. Dual-luciferase reporter assays assessed the relationship between PDGF-ß and HIF-1α. Co-culturing with BMECs alleviated OGD-induced reduction in BVP viability, elevation in BVP apoptosis, and repression in BVP migration. Co-culturing with BVPs protected against OGD-induced impairment on BMEC permeability. OGD-induced HIF-1α upregulation enhanced PDGF-ß expression in mono-cultured BMECs and co-cultured BMECs with BVPs. Knockdown of HIF-1α impaired the effect of BMECs on BVPs under OGD conditions, and PDGFR-ß silencing in BVPs blocked the crosstalk between BMECs and BVPs under OGD conditions. The crosstalk between BMECs and BVPs was implicated in OGD-induced BBB injury through the HIF-1α/PDGF-ß signaling.


Subject(s)
Endothelial Cells , Oxygen , Brain/metabolism , Endothelial Cells/metabolism , Glucose/metabolism , Hypoxia/metabolism , Oxygen/metabolism , Pericytes/metabolism , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...