Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 11: 67, 2020.
Article in English | MEDLINE | ID: mdl-32133016

ABSTRACT

Phytoliths are silica bodies formed in living plant tissues. Once deposited in soils through plant debris, they can readily dissolve and then increase the fluxes of silicon (Si) toward plants and/or watersheds. These fluxes enhance Si ecological services in agricultural and marine ecosystems through their impact on plant health and carbon fixation by diatoms, respectively. Fertilization increases crop biomass through the supply of plant nutrients, and thus may enhance Si accumulation in plant biomass. Si and phosphorus (P) fertilization enhance rice crop biomass, but their combined impact on Si accumulation in plants is poorly known. Here, we study the impact of combined Si-P fertilization on the production of phytoliths in rice plants. The combination of the respective supplies of 0.52 g Si kg-1 and 0.20 g P kg-1 generated the largest increase in plant shoot biomass (leaf, flag leaf, stem, and sheath), resulting in a 1.3-fold increase compared the control group. Applying combined Si-P fertilizer did not affect the content of organic carbon (OC) in phytoliths. However, it increased plant available Si in soil, plant phytolith content and its total stock (mg phytolith pot-1) in dry plant matter, leading to the increase of the total amount of OC within plants. In addition, P supply increased rice biomass and grain yield. Through these positive effects, combined Si-P fertilization may thus address agronomic (e.g., sustainable ecosystem development) and environmental (e.g., climate change) issues through the increase in crop yield and phytolith production as well as the promotion of Si ecological services and OC accumulation within phytoliths.

2.
PLoS One ; 8(9): e73747, 2013.
Article in English | MEDLINE | ID: mdl-24066067

ABSTRACT

The occlusion of carbon (C) by phytoliths, the recalcitrant silicified structures deposited within plant tissues, is an important persistent C sink mechanism for croplands and other grass-dominated ecosystems. By constructing a silica content-phytolith content transfer function and calculating the magnitude of phytolith C sink in global croplands with relevant crop production data, this study investigated the present and potential of phytolith C sinks in global croplands and its contribution to the cropland C balance to understand the cropland C cycle and enhance long-term C sequestration in croplands. Our results indicate that the phytolith sink annually sequesters 26.35 ± 10.22 Tg of carbon dioxide (CO2) and may contribute 40 ± 18% of the global net cropland soil C sink for 1961-2100. Rice (25%), wheat (19%) and maize (23%) are the dominant contributing crop species to this phytolith C sink. Continentally, the main contributors are Asia (49%), North America (17%) and Europe (16%). The sink has tripled since 1961, mainly due to fertilizer application and irrigation. Cropland phytolith C sinks may be further enhanced by adopting cropland management practices such as optimization of cropping system and fertilization.


Subject(s)
Carbon Sequestration/physiology , Crops, Agricultural/metabolism , Fertilization , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...