Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(5): 6068-6077, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38258520

ABSTRACT

Deep-level defects in ß-Ga2O3 that worsen the response speed and dark current (Id) of photodetectors (PDs) have been a long-standing issue for its application. Herein, an in situ grown single-crystal Ga2O3 nanoparticle seed layer (NPSL) was used to shorten the response time and reduce the Id of metal-semiconductor-metal (MSM) PDs. With the NPSL, the Id was reduced by 4 magnitudes from 0.389 µA to 81.03 pA, and the decay time (τd1/τd2) decreased from 258/1690 to 62/142 µs at -5 V. In addition, the PDs with the NPSL also exhibit a high responsivity (43.5 A W-1), high specific detectivity (2.81 × 1014 Jones), and large linear dynamic range (61 dB) under 254 nm illumination. The mechanism behind the performance improvement can be attributed to the suppression of the deep-level defects (i.e., self-trapped holes) and increase of the Schottky barrier. The barrier height extracted is increased by 0.18 eV compared with the case without the NPSL. Our work contributes to understanding the relationship between defects and the performance of PDs based on heteroepitaxial ß-Ga2O3 thin films and provides an important reference for the development of high-speed and ultrasensitive deep ultraviolet PDs.

2.
Adv Sci (Weinh) ; 11(7): e2306280, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38063777

ABSTRACT

Methylammonium chloride (MACl) additive is almost irreplaceable in high-performance formamidine perovskite photovoltaics. Nevertheless, Some of the problems that can arise from adding MACl are rarely mentioned. Herein, it is proposed for the first time that the addition of MACl would cause the non-stoichiometric ratio in the perovskite film, resulting in the halogen vacancy. It is demonstrated that the non-synchronous volatilization of methylamine cations and chloride ions leads to the formation of halogen vacancy defects. To solve this problem, the NH4 HCOO is introduced into the perovskite precursor solution to passivate the halogen vacancy. The HCOO- ions have a strong force with lead ions and can fill the halogen vacancy defects. Consequently, the champion devices' power conversion efficiency (PCE) can be improved from 21.23% to 23.72% with negligible hysteresis. And the unencapsulated device can still retain >90% of the initial PCE even operating in N2 atmosphere for over 1200 h. This work illustrates another halogen defect source in the MACl-assisted formamidine perovskite photovoltaics and provides a new route to obtain high-performance perovskite solar cells.

3.
J Phys Condens Matter ; 35(47)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37567212

ABSTRACT

To integrate two-dimensional (2D) materials into van der Waals heterostructures (vdWHs) is regarded as an effective strategy to achieve multifunctional devices. The vdWHs with strong intrinsic ferroelectricity is promising for applications in the design of new electronic devices. The polarization reversal transitions of 2D ferroelectric Ga2O3layers provide a new approach to explore the electronic structure and optical properties of modulated WS2/Ga2O3vdWHs. The WS2/Ga2O3↑ and WS2/Ga2O3↓ vdWHs are designed to explore possible characteristics through the electric field and biaxial strain. The biaxial strain can effectively modulate the mutual transition of two mode vdWHs in type II and type I band alignment. The strain engineering enhances the optical absorption properties of vdWHs, encompassing excellent optical absorption properties in the range from infrared to visible to ultraviolet, ensuring promising applications in flexible electronics and optical devices. Based on the highly modifiable physical properties of the WS2/Ga2O3vdWHs, we have further explored the potential applications for the field-controlled switching of the channel in MOSFET devices.

4.
Phys Chem Chem Phys ; 25(21): 14969-14980, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37211835

ABSTRACT

The integration of two-dimensional (2D) materials into van der Waals heterostructures (vdWHs) is regarded as an effective strategy for fabricating multifunctional devices. Herein, the effects of the vertical electric field and biaxial strain on the electronic, optical and transport properties of SeWS (SWSe)/h-BP vdWHs are systematically investigated using density functional theory calculations. The study shows that electric fields and biaxial strain can modulate not only the band gap but also the band alignment to produce multifunctional device applications. The SWSe/h-BP vdWHs can be used as highly efficient 2D exciton solar cells with a power conversion efficiency of up to 20.68%. In addition, the SWSe/h-BP vdWHs present a significant negative differential resistance (NDR) with a peak-to-valley ratio of 1.12 (1.18). The present work may provide a direction for tunable multiple-band alignments in SWSe/h-BP vdWHs and help achieve multifunctional device applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...