Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 994
Filter
1.
Opt Lett ; 49(13): 3737-3740, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950255

ABSTRACT

An approach for continuous tuning of on-chip optical delay with a microring resonator is proposed and demonstrated. By introducing an electro-optically tunable waveguide coupler, the bus waveguide to the resonance coupling can be effectively tuned from the under-coupling regime to the over-coupling regime. The optical delay is experimentally characterized by measuring the relative phase shift between lasers and shows a large dynamic range of delay from -600 to 600 ps and an efficient tuning of delay from -430 to -180 ps and from 40 to 240 ps by only a 5 V voltage.

2.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 723-729, 2024 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-39014949

ABSTRACT

OBJECTIVES: To explore the diagnostic efficacy of serum 14-3-3ß protein combined with fractional exhaled nitric oxide (FeNO) and conventional ventilatory lung function parameters in diagnosing bronchial asthma (referred to as "asthma") in children. METHODS: A prospective study included 136 children initially diagnosed with asthma during an acute episode as the asthma group, and 85 healthy children undergoing routine health checks as the control group. The study compared the differences in serum 14-3-3ß protein concentrations between the two groups, analyzed the correlation of serum 14-3-3ß protein with clinical indices, and evaluated the diagnostic efficacy of combining 14-3-3ß protein, FeNO, and conventional ventilatory lung function parameters for asthma in children. RESULTS: The concentration of serum 14-3-3ß protein was higher in the asthma group than in the control group (P<0.001). Serum 14-3-3ß protein showed a positive correlation with the percentage of neutrophils and total serum immunoglobulin E, and a negative correlation with conventional ventilatory lung function parameters (P<0.05). Cross-validation of combined indices showed that the combination of 14-3-3ß protein, FeNO, and the percentage of predicted value of forced expiratory flow at 75% of lung volume had an area under the curve of 0.948 for predicting asthma, with a sensitivity and specificity of 88.9% and 93.7%, respectively, demonstrating good diagnostic efficacy (P<0.001). The model had the best extrapolation. CONCLUSIONS: The combination of serum 14-3-3ß protein, FeNO, and the percentage of predicted value of forced expiratory flow at 75% of lung volume can significantly improve the diagnostic efficacy for asthma in children. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 723-729.


Subject(s)
14-3-3 Proteins , Asthma , Nitric Oxide , Humans , Asthma/diagnosis , Asthma/blood , Asthma/physiopathology , Male , Female , Child , 14-3-3 Proteins/blood , Nitric Oxide/analysis , Nitric Oxide/blood , Child, Preschool , Prospective Studies , Respiratory Function Tests , Fractional Exhaled Nitric Oxide Testing , Adolescent , Breath Tests
3.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38860831

ABSTRACT

Measurement device independent quantum key distribution (MDI QKD) has attracted growing attention for its immunity to attacks at the measurement unit, but its unique structure limits the secret key rate. Utilizing the wavelength division multiplexing (WDM) technique and reducing error rates are effective strategies for enhancing the secret key rate. Reducing error rates often requires active feedback control of wavelengths using precise external references. However, for a multiwavelength laser, employing multiple references to stabilize each wavelength output places stringent demands on these references and significantly increases system complexity. Here, we demonstrate a stable, wavelength-tunable multiwavelength laser with an output wavelength ranging from 1270 to 1610 nm. Through precise temperature control and stable drive current, we passively lock the laser wavelength, achieving remarkable wavelength stability. This significantly reduce the error rate, leading to an almost doubling of the secret key rate compared to previous experiments. Furthermore, the exceptional wavelength stability offered by our multiwavelength laser, combined with the WDM technique, has further boosted the secret key rate of MDI QKD. With a wide wavelength tuning range of 5.1 nm, our multiwavelength laser facilitates flexible operation across multiple dense wavelength division multiplexing channels. Coupled with high wavelength stability and multiple wavelength outputs simultaneously, this laser offers a promising solution for a high-rate MDI QKD system.

4.
Phys Rev Lett ; 132(21): 210202, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856248

ABSTRACT

Einstein-Podolsky-Rosen (EPR) steering, a distinctive quantum correlation, reveals a unique and inherent asymmetry. This research delves into the multifaceted asymmetry of EPR steering within high-dimensional quantum systems, exploring both theoretical frameworks and experimental validations. We introduce the concept of genuine high-dimensional one-way steering, wherein a high Schmidt number of bipartite quantum states is demonstrable in one steering direction but not reciprocally. Additionally, we explore two criteria to certify the lower and upper bounds of the Schmidt number within a one-sided device-independent context. These criteria serve as tools for identifying potential asymmetric dimensionality of EPR steering in both directions. By preparing two-qutrit mixed states with high fidelity, we experimentally observe asymmetric structures of EPR steering in the C^{3}⊗C^{3} Hilbert space. Our Letter offers new perspectives to understand the asymmetric EPR steering beyond qubits and has potential applications in asymmetric high-dimensional quantum information tasks.

5.
Sci Adv ; 10(18): eadj3435, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691593

ABSTRACT

Quantum entanglement and decoherence are the two counterforces of many quantum technologies and protocols. For example, while quantum teleportation is fueled by a pair of maximally entangled resource qubits, it is vulnerable to decoherence. Here, we propose an efficient quantum teleportation protocol in the presence of pure decoherence and without entangled resource qubits entering the Bell-state measurement. Instead, we use multipartite hybrid entanglement between the auxiliary qubits and their local environments within the open-quantum system context. With a hybrid-entangled initial state, it is the decoherence that allows us to achieve high fidelities. We demonstrate our protocol in an all-optical experiment.

6.
Phys Rev Lett ; 132(16): 163603, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701459

ABSTRACT

Phonon-based frequency combs that can be generated in the optical and microwave frequency domains have attracted much attention due to the small repetition rates and the simple setup. Here, we experimentally demonstrate a new type of phonon-based frequency comb in a silicon optomechanical crystal cavity including both a breathing mechanical mode (∼GHz) and flexural mechanical modes (tens of MHz). We observe strong mode competition between two approximate flexural mechanical modes, i.e., 77.19 and 90.17 MHz, resulting in only one preponderant lasing, while maintaining the lasing of the breathing mechanical mode. These simultaneous observations of two-mode phonon lasing state and significant mode competition are counterintuitive. We have formulated comprehensive theories to elucidate this phenomenon in response to this intriguing outcome. In particular, the self-pulse induced by the free carrier dispersion and thermo-optic effects interacts with two approximate flexural mechanical modes, resulting in the repetition rate of the comb frequency-locked to exact fractions of one of the flexural mechanical modes and the mode hopping between them. This phonon-based frequency comb has at least 260 comblines and a repetition rate as low as a simple fraction of the flexural mechanical frequency. Our demonstration offers an alternative optomechanical frequency comb for sensing, timing, and metrology applications.

7.
Phys Rev Lett ; 132(16): 160201, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701466

ABSTRACT

Quantum theory allows information to flow through a single device in a coherent superposition of two opposite directions, resulting into situations where the input-output direction is indefinite. Here we introduce a theoretical method to witness input-output indefiniteness in a single quantum device, and we experimentally demonstrate it by constructing a photonic setup that exhibits input-output indefiniteness with a statistical significance exceeding 69 standard deviations. Our results provide a way to characterize input-output indefiniteness as a resource for quantum information and photonic quantum technologies and enable tabletop simulations of hypothetical scenarios exhibiting quantum indefiniteness in the direction of time.

8.
Chin J Traumatol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38762418

ABSTRACT

PURPOSE: Intertrochanteric fracture (ITF) classification is crucial for surgical decision-making. However, orthopedic trauma surgeons have shown lower accuracy in ITF classification than expected. The objective of this study was to utilize an artificial intelligence (AI) method to improve the accuracy of ITF classification. METHODS: We trained a network called YOLOX-SwinT, which is based on the You Only Look Once X (YOLOX) object detection network with Swin Transformer (SwinT) as the backbone architecture, using 762 radiographic ITF examinations as the training set. Subsequently, we recruited 5 senior orthopedic trauma surgeons (SOTS) and 5 junior orthopedic trauma surgeons (JOTS) to classify the 85 original images in the test set, as well as the images with the prediction results of the network model in sequence. Statistical analysis was performed using the Statistical Package for the Social Sciences (SPSS) 20.0 (IBM Corp., Armonk, NY, USA) to compare the differences among the SOTS, JOTS, SOTS + AI, JOTS + AI, SOTS + JOTS, and SOTS + JOTS + AI groups. All images were classified according to the AO/OTA 2018 classification system by 2 experienced trauma surgeons and verified by another expert in this field. Based on the actual clinical needs, after discussion, we integrated 8 subgroups into 5 new subgroups, and the dataset was divided into training, validation, and test sets by the ratio of 8:1:1. RESULTS: The mean average precision at the intersection over union (IoU) of 0.5 (mAP50) for subgroup detection reached 90.29%. The classification accuracy values of SOTS, JOTS, SOTS + AI, and JOTS + AI groups were 56.24% ± 4.02%, 35.29% ± 18.07%, 79.53% ± 7.14%, and 71.53% ± 5.22%, respectively. The paired t-test results showed that the difference between the SOTS and SOTS + AI groups was statistically significant, as well as the difference between the JOTS and JOTS + AI groups, and the SOTS + JOTS and SOTS + JOTS + AI groups. Moreover, the difference between the SOTS + JOTS and SOTS + JOTS + AI groups in each subgroup was statistically significant, with all p < 0.05. The independent samples t-test results showed that the difference between the SOTS and JOTS groups was statistically significant, while the difference between the SOTS + AI and JOTS + AI groups was not statistically significant. With the assistance of AI, the subgroup classification accuracy of both SOTS and JOTS was significantly improved, and JOTS achieved the same level as SOTS. CONCLUSION: In conclusion, the YOLOX-SwinT network algorithm enhances the accuracy of AO/OTA subgroups classification of ITF by orthopedic trauma surgeons.

9.
Angew Chem Int Ed Engl ; 63(27): e202402374, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38655601

ABSTRACT

The construction of secondary building units (SBUs) in versatile metal-organic frameworks (MOFs) represents a promising method for developing multi-functional materials, especially for improving their sensitizing ability. Herein, we developed a dual small molecules auxiliary strategy to construct a high-nuclear transition-metal-based UiO-architecture Co16-MOF-BDC with visible-light-absorbing capacity. Remarkably, the N3 - molecule in hexadecameric cobalt azide SBU offers novel modification sites to precise bonding of strong visible-light-absorbing chromophores via click reaction. The resulting Bodipy@Co16-MOF-BDC exhibits extremely high performance for oxidative coupling benzylamine (~100 % yield) via both energy and electron transfer processes, which is much superior to that of Co16-MOF-BDC (31.5 %) and Carboxyl @Co16-MOF-BDC (37.5 %). Systematic investigations reveal that the advantages of Bodipy@Co16-MOF-BDC in dual light-absorbing channels, robust bonding between Bodipy/Co16 clusters and efficient electron-hole separation can greatly boost photosynthesis. This work provides an ideal molecular platform for synergy between photosensitizing MOFs and chromophores by constructing high-nuclear transition-metal-based SBUs with surface-modifiable small molecules.

10.
Opt Lett ; 49(7): 1729-1732, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560848

ABSTRACT

Soliton microcombs are regarded as an ideal platform for applications such as optical communications, optical sensing, low-noise microwave sources, optical atomic clocks, and frequency synthesizers. Many of these applications require a broad comb spectrum that covers an octave, essential for implementing the f - 2f self-referencing techniques. In this work, we have successfully generated an octave-spanning soliton microcomb based on a z-cut thin-film lithium niobate (TFLN) microresonator. This achievement is realized under on-chip optical pumping at 340 mW and through extensive research into the broadening of dual dispersive waves (DWs). Furthermore, the repetition rate of the octave soliton microcomb is accurately measured using an electro-optic comb generated by an x-cut TFLN racetrack microresonator. Our results represent a crucial step toward the realization of practical, integrated, and fully stabilized soliton microcomb systems based on TFLN.

11.
Phys Rev Lett ; 132(11): 110801, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38563910

ABSTRACT

Reducing the average resource consumption is the central quest in discriminating non-orthogonal quantum states for a fixed admissible error rate ϵ. The globally optimal fixed local projective measurement for this task is found to be different from that for previous minimum-error discrimination tasks [S. Slussarenko et al., Phys. Rev. Lett. 118, 030502 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.030502]. To achieve the ultimate minimum average consumption, here we develop a general globally optimal adaptive strategy (GOA) by subtly using the updated posterior probability, which works under any error rate requirements and any one-way measurement restrictions, and can be solved by a convergent iterative relation. First, under the local measurement restrictions, our GOA is solved to serve as the local bound, which saves 16.6 copies (24%) compared with the previously best globally optimal fixed local projective measurement. When the more powerful two-copy collective measurements are allowed, our GOA is experimentally demonstrated to beat the local bound by 3.9 copies (6.0%). By exploiting both adaptivity and collective measurements, our Letter marks an important step toward minimum-consumption quantum state discrimination.

12.
Phys Rev Lett ; 132(13): 133603, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613308

ABSTRACT

An integrated quantum light source is increasingly desirable in large-scale quantum information processing. Despite recent remarkable advances, a new material platform is constantly being explored for the fully on-chip integration of quantum light generation, active and passive manipulation, and detection. Here, for the first time, we demonstrate a gallium nitride (GaN) microring based quantum light generation in the telecom C-band, which has potential toward the monolithic integration of quantum light source. In our demonstration, the GaN microring has a free spectral range of 330 GHz and a near-zero anomalous dispersion region of over 100 nm. The generation of energy-time entangled photon pair is demonstrated with a typical raw two-photon interference visibility of 95.5±6.5%, which is further configured to generate a heralded single photon with a typical heralded second-order autocorrelation g_{H}^{(2)}(0) of 0.045±0.001. Our results pave the way for developing a chip-scale quantum photonic circuit.

13.
BMC Anesthesiol ; 24(1): 130, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580909

ABSTRACT

BACKGROUND: Skin mottling is a common manifestation of peripheral tissue hypoperfusion, and its severity can be described using the skin mottling score (SMS). This study aims to evaluate the value of the SMS in detecting peripheral tissue hypoperfusion in critically ill patients following cardiac surgery. METHODS: Critically ill patients following cardiac surgery with risk factors for tissue hypoperfusion were enrolled (n = 373). Among these overall patients, we further defined a hypotension population (n = 178) and a shock population (n = 51). Hemodynamic and perfusion parameters were recorded. The primary outcome was peripheral hypoperfusion, defined as significant prolonged capillary refill time (CRT, > 3.0 s). The characteristics and hospital mortality of patients with and without skin mottling were compared. The area under receiver operating characteristic curves (AUROC) were used to assess the accuracy of SMS in detecting peripheral hypoperfusion. Besides, the relationships between SMS and conventional hemodynamic and perfusion parameters were investigated, and the factors most associated with the presence of skin mottling were identified. RESULTS: Of the 373-case overall population, 13 (3.5%) patients exhibited skin mottling, with SMS ranging from 1 to 5 (5, 1, 2, 2, and 3 cases, respectively). Patients with mottling had lower mean arterial pressure, higher vasopressor dose, less urine output (UO), higher CRT, lactate levels and hospital mortality (84.6% vs. 12.2%, p < 0.001). The occurrences of skin mottling were higher in hypotension population and shock population, reaching 5.6% and 15.7%, respectively. The AUROC for SMS to identify peripheral hypoperfusion was 0.64, 0.68, and 0.81 in the overall, hypotension, and shock populations, respectively. The optimal SMS threshold was 1, which corresponded to specificities of 98, 97 and 91 and sensitivities of 29, 38 and 67 in the three populations (overall, hypotension and shock). The correlation of UO, lactate, CRT and vasopressor dose with SMS was significant, among them, UO and CRT were identified as two major factors associated with the presence of skin mottling. CONCLUSION: In critically ill patients following cardiac surgery, SMS is a very specific yet less sensitive parameter for detecting peripheral tissue hypoperfusion.


Subject(s)
Cardiac Surgical Procedures , Hypotension , Shock, Septic , Humans , Critical Illness , Cardiac Surgical Procedures/adverse effects , Hypotension/diagnosis , Hypotension/complications , Lactates
14.
Proc Natl Acad Sci U S A ; 121(17): e2314353121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38635634

ABSTRACT

Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.


Subject(s)
Arabidopsis Proteins , Arabidopsis , F-Box Proteins , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Signal Transduction , Ubiquitins/metabolism , Gene Expression Regulation, Plant , F-Box Proteins/genetics , F-Box Proteins/metabolism
16.
Sci Adv ; 10(11): eadl4871, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489356

ABSTRACT

Noise-enhanced applications in open quantum walk (QW) has recently seen a surge due to their ability to improve performance. However, verifying the success of open QW is challenging, as mixed-state tomography is a resource-intensive process, and implementing all required measurements is almost impossible due to various physical constraints. To address this challenge, we present a neural-network-based method for reconstructing mixed states with a high fidelity (∼97.5%) while costing only 50% of the number of measurements typically required for open discrete-time QW in one dimension. Our method uses a neural density operator that models the system and environment, followed by a generalized natural gradient descent procedure that significantly speeds up the training process. Moreover, we introduce a compact interferometric measurement device, improving the scalability of our photonic QW setup that enables experimental learning of mixed states. Our results demonstrate that highly expressive neural networks can serve as powerful alternatives to traditional state tomography.

17.
Light Sci Appl ; 13(1): 74, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485915

ABSTRACT

Photonic quantum computation plays an important role and offers unique advantages. Two decades after the milestone work of Knill-Laflamme-Milburn, various architectures of photonic processors have been proposed, and quantum advantage over classical computers has also been demonstrated. It is now the opportune time to apply this technology to real-world applications. However, at current technology level, this aim is restricted by either programmability in bulk optics or loss in integrated optics for the existing architectures of processors, for which the resource cost is also a problem. Here we present a von-Neumann-like architecture based on temporal-mode encoding and looped structure on table, which is capable of multimode-universal programmability, resource-efficiency, phase-stability and software-scalability. In order to illustrate these merits, we execute two different programs with varying resource requirements on the same processor, to investigate quantum signature of chaos from two aspects: the signature behaviors exhibited in phase space (13 modes), and the Fermi golden rule which has not been experimentally studied in quantitative way before (26 modes). The maximal program contains an optical interferometer network with 1694 freely-adjustable phases. Considering current state-of-the-art, our architecture stands as the most promising candidate for real-world applications.

18.
Phys Rev Lett ; 132(7): 070203, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38427853

ABSTRACT

Uncertainty relations for Hermitian operators have been confirmed through many experiments. However, previous experiments have only tested the special case of non-Hermitian operators, i.e., uncertainty relations for unitary operators. In this study, we explore uncertainty relations for general non-Hermitian operators, which include Hermitian and unitary operators as special cases. We perform experiments with both real and complex non-Hermitian operators for qubit states, and confirm the validity of the uncertainty relations within the experimental error. Our results provide experimental evidence of uncertainty relations for non-Hermitian operators. Furthermore, our methods for realizing and measuring non-Hermitian operators are valuable in characterizing open-system dynamics and enhancing parameter estimation.

19.
Appl Opt ; 63(7): 1719-1726, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437271

ABSTRACT

On-chip acousto-optic modulators that operate at an optical wavelength of 780 nm and a microwave frequency of 6.835 GHz are proposed. The modulators are based on a lithium-niobate-on-sapphire platform and efficiently excite surface acoustic waves and exhibit strong interactions with tightly confined optical modes in waveguides. In particular, a high-efficiency phase modulator and single-sideband mode converter are designed. We found that for both microwave and optical wavelengths below 1 µm, the interactions at the cross-sections of photonic waveguides are sensitive to the waveguide width and are significantly different from those in previous studies. Our designed devices have small footprints and high efficiencies, making them suitable for controlling rubidium atoms and realizing hybrid photonic-atomic chips. Furthermore, our devices have the potential to extend the acousto-optic modulators to other visible wavelengths for other atom transitions and for visible light applications, including imaging and sensing.

20.
Phys Rev Lett ; 132(8): 080202, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38457709

ABSTRACT

Quantum measurements based on mutually unbiased bases (MUBs) play crucial roles in foundational studies and quantum information processing. It is known that there exist inequivalent MUBs, but little is known about their operational distinctions, not to say experimental demonstration. In this Letter, by virtue of a simple estimation problem, we experimentally demonstrate the operational distinctions between inequivalent triples of MUBs in dimension 4 based on high-precision photonic systems. The experimental estimation fidelities coincide well with the theoretical predictions with only 0.16% average deviation, which is 25 times less than the difference (4.1%) between the maximum estimation fidelity and the minimum estimation fidelity. Our experiments clearly demonstrate that inequivalent MUBs have different information extraction capabilities and different merits for quantum information processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...