Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(40): 16426-16434, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37750677

ABSTRACT

Metal-organic frameworks (MOFs) are emerging as promising candidates for electrochemical glucose sensing owing to their ordered channels, tunable chemistry, and atom-precision metal sites. Herein, the efficient nonenzymatic electrochemical glucose sensing is achieved by taking advantage of Ni(II)-based metal-organic frameworks (Ni(II)-MOFs) and acquiring the ever-reported fastest response time. Three Ni(II)-MOFs ({[Ni6L2(H2O)26]4H2O}n (CTGU-33), {Ni(bib)1/2(H2L)1/2(H2O)3}n (CTGU-34), {Ni(phen)(H2L)1/2(H2O)2}n (CTGU-35)) have been synthesized for the first time, which use benzene-1,2,3,4,5,6-hexacarboxylic acid (H6L) as an organic ligand and introduce 1,4-bis(1-imidazoly)benzene (bib) or 1,10-phenanthroline (phen) as spatially auxiliary ligands. Bib and phen convert the coordination mode of CTGU-33, affording structural dimensions from 2D of CTGU-33 to 3D of CTGU-34 or 1D of CTGU-35. By tuning the dimension of the skeleton, CTGU-34 with 3D interconnected channels exhibits an ultrafast response of less than 0.4 s, which is superior to the existing nonenzymatic electrochemical sensors. Additionally, a low detection limit of 0.12 µM (S/N = 3) and a high sensitivity of 1705 µA mM-1 cm-2 are simultaneously achieved. CTGU-34 further showcases desirable anti-interference and cycling stability, which demonstrates a promising application prospect in the real-time detection of glucose.

2.
Dalton Trans ; 52(23): 7819-7827, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37212634

ABSTRACT

Transition metal sulfides are low-cost oxygen evolution reaction (OER) electrocatalysts that can potentially substitute noble metal catalysts. However, the adsorption process of their OER is impeded by their intrinsic poor catalytic activity. Constructing heterojunction and vacancy defects in transition metal sulfides is an efficient method to promote the process of oxygen evolution. Herein, a facile approach based on in situ sulfurization of metal-organic gels (MOGs) and a short-time plasma treatment was developed to fabricate vacancy-modified polymetallic sulfides heterojunction. The synergistic effect of the multi-component heterojunction and sulfur vacancy contributed greatly to improving the electron migration efficiency and OER ability of the electrocatalyst. As a result, the optimum oxygen evolution activity was achieved with appropriate surface vacancy concentrations by regulating the plasma radio frequency powers. The plasma-treated catalyst under 400 W showed the best OER performance (lower overpotential of 235 mV in 1 M KOH solution with the Tafel slope of 31 mV dec-1) and good durability over 11 h of chronopotentiometry testing. This work sheds new light on constructing multimetal-based heterojunction electrocatalysts with rich vacancy defects for oxygen evolution reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...