Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Circ Res ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864216

ABSTRACT

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1. lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.

2.
Food Chem ; 454: 139744, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38797096

ABSTRACT

The long-term and excessive use of glyphosate (GLY) in diverse matrices has caused serious hazard to the human and environment. However, the ultrasensitive detection of GLY still remains challenging. In this study, the smartphone-assisted dual-signal mode ratiometric fluorescent and paper sensors based on the red-emissive gold nanoclusters (R-AuNCs) and blue-emissive carbon dots (B-CDs) were ingeniously designed accurate and sensitive detection of GLY. Upon the presence of GLY, it would quench the fluorescence of B-CDs through dynamic quenching effect, and strengthen the fluorescence response of R-AuNCs due to aggregation-induced enhancement effect. Through calculating the GLY-induced fluorescence intensity ratio of B-CDs to R-AuNCs by using a fluorescence spectrophotometer, low to 0.218 µg/mL of GLY could be detected in lab in a wide concentration range of 0.3-12 µg/mL with high recovery of 94.7-103.1% in the spiked malt samples. The smartphone-assisted ratiometric fluorescent sensor achieved in the 96-well plate could monitor 0-11 µg/mL of GLY with satisfactory recovery of 94.1-107.0% in real edible malt matrices for high-throughput analysis. In addition, a portable smartphone-assisted ratiometric paper sensor established through directly depositing the combined B-CDs/R-AuNCs probes on the test strip could realize on-site measurement of 2-8 µg/mL of GLY with good linear relationship. This study provides new insights into developing the dual-signal ratiometric sensing platforms for the in-lab sensitive detection, high-throughput analysis, and on-site portable measurement of more trace contaminants in foods, clinical and environmental samples.

3.
Article in English | MEDLINE | ID: mdl-38814793

ABSTRACT

BACKGROUND: Daptomycin is widely used in critically ill patients for Gram-positive bacterial infections. Extracorporeal membrane oxygenation (ECMO) is increasingly used in this population and can potentially alter the pharmacokinetic (PK) behaviour of antibiotics. However, the effect of ECMO has not been evaluated in daptomycin. Our study aims to explore the effect of ECMO on daptomycin in critically ill patients through population pharmacokinetic (PopPK) analysis and to determine optimal dosage regimens based on both efficacy and safety considerations. METHODS: A prospective, open-label PK study was carried out in critically ill patients with or without ECMO. The total concentration of daptomycin was determined by UPLC-MS/MS. NONMEM was used for PopPK analysis and Monte Carlo simulations. RESULTS: Two hundred and ninety-three plasma samples were collected from 36 critically ill patients, 24 of whom received ECMO support. A two-compartment model with first-order elimination can best describe the PK of daptomycin. Creatinine clearance (CLCR) significantly affects the clearance of daptomycin while ECMO has no significant effect on the PK parameters. Monte Carlo simulations showed that, when the MICs for bacteria are  ≥1 mg/L, the currently recommended dosage regimen is insufficient for critically ill patients with CLCR > 30 mL/min. Our simulations suggest 10 mg/kg for patients with CLCR between 30 and 90 mL/min, and 12 mg/kg for patients with CLCR higher than 90 mL/min. CONCLUSIONS: This is the first PopPK model of daptomycin in ECMO patients. Optimal dosage regimens considering efficacy, safety, and pathogens were provided for critical patients based on pharmacokinetic-pharmacodynamic analysis.

4.
Exp Ther Med ; 27(6): 269, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38756900

ABSTRACT

Multiple myeloma (MM) is a plasma cell clonal disease and these plasma cells can survive in the gut. The intestinal microbiota is a complex ecosystem and its dysfunction can release persistent stimulus signals that trigger genetic mutations and clonal evolution in the gut. The present study analyzed the intestinal microbiota in fecal samples of MM patients in high-altitude and cold regions of China using 16s rRNA sequencing and analyzed significantly enriched species at the phylum and genus levels. Although no significant difference in the alpha diversity was observed between the MM and control groups, a significant difference was noted in the beta diversity. A total of 15 significant differential bacteria at the genus level were found between the two groups, among which Bacteroides, Streptococcus, Lactobacillus and Alistipes were significantly enriched in the MM group. The present study also constructed a disease diagnosis model using Random Forest analysis and verified its accuracy using receiver operating characteristic analysis. In addition, using correlation analysis, it demonstrated that the composition of the intestinal microbiota in patients with MM was associated with complement levels. Notably, the present study predicted that the signaling and metabolic pathways of the intestinal microbiota affected MM progression through Kyoto Encyclopedia of Genes and Genomes functional analysis. The present study provides a new approach for the prevention and treatment of MM, in which the intestinal microbiota may become a novel therapeutic target for MM.

5.
Exp Ther Med ; 27(6): 262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38756908

ABSTRACT

Ultraviolet (UV) is divided into UVA (long-wave, 320-400 nm), UVB (middle-wave, 280-320 nm) and UVC (short-wave, 100-280 nm) based on wavelength. UV radiation (UVR) from sunlight (UVA + UVB) is a major cause of skin photodamage including skin inflammation, aging and pigmentation. Accidental exposure to UVC burns the skin and induces skin cancer. In addition to the skin, UV radiation can also impair visual function. Non-coding RNAs (ncRNAs) are a class of functional RNAs that do not have coding activity but can control cellular processes at the post-transcriptional level, including microRNA (miRNA), long non-coding RNA (lncRNA) and circulatory RNA (circRNA). Through a review of the literature, it was determined that UVR can affect the expression of various ncRNAs, and that this regulation may be wavelength specific. Functionally, ncRNAs participate in the regulation of photodamage through various pathways and play pathogenic or protective regulatory roles. In addition, ncRNAs that are upregulated or downregulated by UVR can serve as biomarkers for UV-induced diseases, aiding in diagnosis and prognosis assessment. Therapeutic strategies targeting ncRNAs, including the use of natural drugs and their extracts, have shown protective effects against UV-induced photodamage. In the present review, an extensive summarization of previous studies was performed and the role and mechanism of ncRNAs in UV-induced radiation effects was reviewed to aid in the diagnosis and treatment of UV-related diseases.

6.
J Affect Disord ; 356: 586-596, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38657764

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is frequently associated with the occurrence and development of depression, and the co-occurrence of diabetes mellitus with depression (DD) may further reduce patients' quality of life. Recent research indicates that dopamine receptors (DRs) play a crucial role in immune and metabolic regulation. Pramipexole (PPX), a D2/3R agonist, has demonstrated promising neuroprotective and immunomodulatory effects. Nevertheless, the therapeutic effects and mechanisms of action of PPX on DM-induced depression are not clear at present. METHODS: Depression, DM, and DD were induced in a rat model through a combination of a high-fat diet (HFD) supplemented with streptozotocin (STZ) and chronic unpredictable mild stress (CUMS) combined with solitary cage rearing. The pathogenesis of DD and the neuroprotective effects of DRs agonists were investigated using behavioral assays, enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, Nissl staining, Western blotting (WB) and immunofluorescence (IF). RESULTS: DD rats exhibited more severe dopaminergic, neuroinflammatory, and neuroplastic impairments and more pronounced depressive behaviors than rats with depression alone or DM. Our findings suggest that DRs agonists have significant therapeutic effects on DD rats and that PPX improved neuroplasticity and decreased neuroinflammation in the hippocampus of DD rats while also promoting DG cell growth and differentiation, ultimately mitigating depression-like behaviors. LIMITATION: Our study is based on a rat model. Further evidence is needed to determine whether the therapeutic effects of PPX apply to patients suffering from DD. CONCLUSIONS: Neuroinflammation mediated by damage to the dopaminergic system is one of the key pathogenic mechanisms of DD. We provide evidence that PPX has a neuroprotective effect on the hippocampus in DD rats and the mechanism may involve the inhibition of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation by DRs to attenuate the neuroinflammatory response and neuroplasticity damage.


Subject(s)
Depression , Diabetes Mellitus, Experimental , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Neuronal Plasticity , Pramipexole , Animals , Pramipexole/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Neuronal Plasticity/drug effects , Male , Inflammasomes/drug effects , Depression/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Rats, Sprague-Dawley , Neuroinflammatory Diseases/drug therapy , Dopamine Agonists/pharmacology , Hippocampus/drug effects , Neuroprotective Agents/pharmacology , Behavior, Animal/drug effects , Disease Models, Animal
7.
Front Nutr ; 11: 1361890, 2024.
Article in English | MEDLINE | ID: mdl-38685954

ABSTRACT

Background: The Dietary Inflammation Index (DII) is a tool for evaluating the potential for dietary inflammation, and inflammation is a major cause of exacerbation in chronic kidney disease. Our study aimed to investigate the relationship between DII and albuminuria. Methods: Data were obtained from the 2005-2018 National Health and Nutrition Examination Survey (NHANES) after excluding pregnant, minors, and missing data of urinary albumin-creatinine ratio (ACR), estimated glomerular filtration rate (eGFR), and DII were enrolled in our study. Albuminuria was defined as ACR > 30 mg/g. DII was calculated and divided into tertiles. After fully adjusted, multivariate logistic regression analysis and subgroup analysis were performed to investigate the association between DII and albuminuria. Results: A total of 22,607 participants including 2,803 (12.40%) with and 19,804 (87.60%) without albuminuria were enrolled in our study. The albuminuria increased with the increasing DII tertiles (Tertile 1: 10.81%; Tertile 2: 12.41%; Tertile 3:13.97%, P < 0.001). After fully adjusting for covariates, multivariate logistic regression showed that the higher the DII, the greater the odds of albuminuria (OR = 1.19; 95% CI, 1.00-1.41, P < 0.001). Subgroup analysis and interaction test of participants found that the positive correlation between DII and albuminuria was not significantly related to gender, age, BMI, hypertension, diabetes, and eGFR (P for interaction >0.05). Conclusion: Elevated DII is associated with high odds of albuminuria. Further large-scale prospective studies are still needed to analyze the role of DII in albuminuria.

8.
Small ; : e2310338, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412411

ABSTRACT

Zinc-ion batteries (ZIBs) are promising energy storage systems due to high energy density, low-cost, and abundant availability of zinc as a raw material. However, the greatest challenge in ZIBs research is lack of suitable cathode materials that can reversibly intercalate Zn2+ ions. 2D layered materials, especially MoS2 -based, attract tremendous interest due to large surface area and ability to intercalate/deintercalate ions. Unfortunately, pristine MoS2 obtained by traditional protocols such as chemical exfoliation or hydrothermal/solvothermal methods exhibits limited electronic conductivity and poor chemical stability upon charge/discharge cycling. Here, a novel molecular strategy to boost the electrochemical performance of MoS2 cathode materials for aqueous ZIBs is reported. The use of dithiolated conjugated molecular pillars, that is, 4,4'-biphenyldithiols, enables to heal defects and crosslink the MoS2 nanosheets, yielding covalently bridged networks (MoS2 -SH2) with improved ionic and electronic conductivity and electrochemical performance. In particular, MoS2 -SH2 electrodes display high specific capacity of 271.3 mAh g-1 at 0.1 A g-1 , high energy density of 279 Wh kg-1 , and high power density of 12.3 kW kg-1 . With its outstanding rate capability (capacity of 148.1 mAh g-1 at 10 A g-1 ) and stability (capacity of 179 mAh g-1 after 1000 cycles), MoS2 -SH2 electrodes outperform other MoS2 -based electrodes in ZIBs.

9.
Clin Res Cardiol ; 113(4): 509-521, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37217802

ABSTRACT

OBJECTIVES: For patients with severe cardiopulmonary failure, such as cardiogenic shock, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is primarily utilized to preserve their life by providing continuous extracorporeal respiration and circulation. However, because of the complexity of patients' underlying diseases and serious complications, successful weaning from ECMO is often difficult. At present, there have been limited studies on ECMO weaning strategies, so the principal purpose of this meta-analysis is to examine how levosimendan contributes to the weaning of extracorporeal membrane oxygenation. METHODS: The Cochrane Library, Embase, Web of Science, and PubMed were browsed for all potentially related research about clinical benefits of levosimendan in weaning patients receiving VA-ECMO and included 15 of them. The main outcome is success of weaning from extracorporeal membrane oxygenation, with the secondary outcomes of 1-month mortality (28 or 30 days), ECMO duration, hospital or intensive care unit (ICU) length of stay, and use of vasoactive drugs. RESULTS: 1772 patients altogether from 15 publications were incorporated in our meta-analysis. We used fixed and random-effect models to combine odds ratio (OR) and 95% confidence interval (CI) for dichotomous outcomes and standardized mean difference (SMD) for continuous outcomes. The weaning success rate in the levosimendan group was considerably higher in contrast to the comparison (OR = 2.78, 95% CI 1.80-4.30; P < 0.00001; I2 = 65%), and subgroup analysis showed that there was less heterogeneity in patients after cardiac surgery (OR = 2.06, 95% CI, 1.35-3.12; P = 0.0007; I2 = 17%). In addition, the effect of levosimendan on improving weaning success rate was statistically significant only at 0.2 mcg/kg/min (OR = 2.45, 95% CI, 1.11-5.40; P = 0.03; I2 = 38%). At the same time, the 28-day or 30-day proportion of deaths in the sample receiving levosimendan also decreased (OR = 0.47, 95% CI, 0.28-0.79; P = 0.004; I2 = 73%), and the difference was statistically significant. In terms of secondary outcomes, we found that individuals undergoing levosimendan treatment had a longer duration of VA-ECMO support. CONCLUSIONS: In patients receiving VA-ECMO, levosimendan treatment considerably raised the weaning success rate and helped lower mortality. Since most of the evidence comes from retrospective studies, more randomized multicenter trials are required to verify the conclusion.


Subject(s)
Cardiac Surgical Procedures , Extracorporeal Membrane Oxygenation , Humans , Simendan/therapeutic use , Extracorporeal Membrane Oxygenation/adverse effects , Retrospective Studies , Shock, Cardiogenic
10.
Phys Chem Chem Phys ; 26(2): 1376-1384, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38112129

ABSTRACT

The rational design of high-performance anode materials is crucial for the development of rechargeable Na-ion batteries (NIBs) and K-ion batteries (KIBs). In this study, based on density functional theory (DFT) calculations, we have systematically investigated the possibility of a bilayer triazine-based covalent organic framework (bilayer TCOF) as an anode for NIBs and KIBs. The calculation of the electronic band structure shows that the bilayer TCOF is a direct band gap semiconductor with a band gap of 2.01 eV. After the adsorption of Na/K at the most favorable sites, the bilayer TCOF transitions from a semiconductor to a metal state, guaranteeing good electronic conductivity. The low diffusion barriers of the bilayer TCOF are 0.45 and 0.26 eV, respectively, indicating a fast diffusion rate of Na/K ions. In addition, the bilayer TCOF has a theoretical storage capacity of up to 628 mA h g-1. Finally, it is found that the average voltage of the bilayer TCOF for NIBs and KIBs is 0.53 and 0.48 V, respectively. Based on these results, we can conclude that the bilayer TCOF may be a suitable anode material for NIBs and KIBs.

11.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5822-5829, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114178

ABSTRACT

Based on the CX3C chemokine ligand 1(CX3CL1)-CX3C chemokine receptor 1(CX3CR1) axis, this study explored the potential mechanism by which Zuogui Jiangtang Jieyu Formula(ZGJTJY) improved neuroinflammation and enhanced neuroprotective effect in a rat model of diabetes mellitus complicated with depression(DD). The DD rat model was established by feeding a high-fat diet combined with streptozotocin(STZ) intraperitoneal injection for four weeks and chronic unpredictable mild stress(CUMS) combined with isolated cage rearing for five weeks. The rats were divided into a control group, a model group, a positive control group, an inhibitor group, and a ZGJTJY group. The open field test and forced swimming test were used to assess the depression-like behaviors of the rats. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the expression levels of the pro-inflammatory cytokines interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in plasma. Immunofluorescence staining was used to detect the expression of ionized calcium-binding adapter molecule 1(Iba1), postsynaptic density protein-95(PSD95), and synapsin-1(SYN1) in the hippocampus. Hematoxylin-eosin(HE) staining, Nissl staining, and TdT-mediated dUTP nick end labeling(TUNEL) fluorescence staining were performed to assess hippocampal neuronal damage. Western blot was used to measure the expression levels of CX3CL1, CX3CR1, A2A adenosine receptor(A2AR), glutamate receptor 2A(NR2A), glutamate receptor 2B(NR2B), and brain-derived neurotrophic factor(BDNF) in the hippocampus. Compared with the model group, the ZGJTJY group showed improved depression-like behaviors in DD rats, enhanced neuroprotective effect, increased expression of PSD95, SYN1, and BDNF(P<0.01), and decreased expression of Iba1, IL-1ß, and TNF-α(P<0.01), as well as the expression of CX3CL1, CX3CR1, A2AR, NR2A, and NR2B(P<0.01). These results suggest that ZGJTJY may exert its neuroprotective effect by inhibiting the CX3CL1-CX3CR1 axis and activation of hippocampal microglia, thereby improving neuroinflammation and abnormal activation of N-methyl-D-aspartate receptor(NMDAR) subunits, and ultimately enhancing the expression of synaptic-related proteins PSD95, SYN1, and BDNF in the hippocampus.


Subject(s)
Diabetes Mellitus , Neuroprotective Agents , Rats , Animals , Depression/drug therapy , Brain-Derived Neurotrophic Factor , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , Receptors, Glutamate , CX3C Chemokine Receptor 1/genetics
12.
Exp Ther Med ; 26(6): 545, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37928509

ABSTRACT

The present meta-analysis investigated the clinical value of serum matrix metalloproteinase (MMP)-9 levels in Coronavirus Disease 2019 (COVID-19) patients. Studies assessing the outcomes of patients with COVID-19 in correlation with the MMP-9 levels were retrieved from PubMed, Web of Science, EMBASE, Cochrane, WANFANG, and CNKI. A meta-analysis was performed to compare the serum MMP-9 levels between different patient groups: Severe vs. non-severe; acute respiratory distress syndrome (ARDS) vs. non-ARDS; non-survivors vs. survivors; neurologic syndrome vs. non-neurologic syndrome; and obese diabetic vs. non-obese diabetic. A total of 2,062 COVID-19-confirmed patients from 12 studies were included in this meta-analysis. The serum MMP-9 levels were significantly higher in patients with severe COVID-19 than in those with non-severe COVID-19 [weighted mean difference (WMD) 246.61 (95% confidence interval (CI), 115.86-377.36), P<0.001]. Patients with ARDS exhibited significantly higher MMP-9 levels than those without ARDS [WMD 248.55 (95% CI, 63.84-433.25), P<0.001]. The MMP-9 levels in the non-survivors did not significantly differ from those in the survivors [WMD 37.79 (95% CI, -18.08-93.65), P=0.185]. Patients with comorbidities, including neurological syndromes, and obese diabetic patients had significantly higher MMP-9 levels than those without comorbidities [WMD 170.73 (95% CI, 95.61-245.85), P<0.001]. Serum MMP-9 levels were associated with COVID-19 severity and may serve as a therapeutic target for improving the prognosis of patients with COVID-19.

14.
Microbiome ; 11(1): 230, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37858205

ABSTRACT

BACKGROUND: Shrimp cultured in a biofloc system (BFS) have a lower disease incidence than those farmed in a water exchange system (WES). Although a number of studies have reported that the gut bacterial community induced by BFS is highly associated with shrimp disease resistance, the causal relationship remains unknown. Here, the promotive roles of gut bacterial community induced by BFS in pathogenic Vibrio infection resistance and its potential micro-ecological and physiological mechanisms were investigated by gut bacterial consortium transplantation and synthetic community (SynCom) construction. RESULTS: The BFS induced a more stable and resistant gut bacterial community, and significantly enriched some beneficial bacterial taxa, such as Paracoccus, Ruegeria, Microbacterium, Demequina, and Tenacibaculum. Transplantation of a gut bacterial consortium from BFS shrimp (EnrichBFS) greatly enhanced the stability of the bacterial community and resistance against pathogenic V. parahaemolyticus infection in WES shrimp, while transplantation of a gut bacterial consortium from WES shrimp significantly disrupted the bacterial community and increased pathogen susceptibility in both WES and BFS shrimp. The addition of EnrichBFS in shrimp postlarvae also improved the pathogen resistance through increasing the relative abundances of beneficial bacterial taxa and stability of bacterial community. The corresponding strains of five beneficial bacterial taxa enriched in BFS shrimp were isolated to construct a SynComBFS. The addition of SynComBFS could not only suppress disease development, but also improve shrimp growth, boost the digestive and immune activities, and restore health in diseased shrimp. Furthermore, the strains of SynComBFS well colonized shrimp gut to maintain a high stability of bacterial community. CONCLUSIONS: Our study reveals an important role for native microbiota in protecting shrimp from bacterial pathogens and provides a micro-ecological regulation strategy towards the development of probiotics to ameliorate aquatic animal diseases. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Penaeidae , Vibrio Infections , Vibrio parahaemolyticus , Animals , Vibrio parahaemolyticus/physiology , Penaeidae/microbiology , Bacteria , Vibrio Infections/prevention & control , Aquaculture
15.
BMC Pulm Med ; 23(1): 248, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415133

ABSTRACT

BACKGROUND: Interstitial lung disease (ILD) is a frequently observed comorbidity in autoimmune diseases such as dermatomyositis/polymyositis (DM/PM), and it is significantly associated with specific autoantibody types. One unique antibody type is the anti-transcription intermediate factor-1γ antibody (anti-TIF-1γ Ab), which has a positive rate of only 7%. It is often found in combination with malignancy and rarely with ILD, particularly rapidly progressive ILD (RPILD). In some cases, the presence of ILD in individuals with DM may indicate a paraneoplastic syndrome. Pneumocystis jiroveci pneumonia (PJP) typically occurs due to intensive immunosuppressive therapy, human immunodeficiency virus (HIV) infection, or malignancy, and rarely as an isolated condition. CASE PRESENTATION: A 52-year-old man with a history of rapid weight loss but non-HIV infected and not immunosuppressed who presented with fever, cough, dyspnea, weakness of the extremities, characteristic rash and mechanic's hand. Pathogenic tests suggested PJP, laboratory tests suggested a single anti-TIF-1γ Ab positive DM, imaging suggested ILD, and pathology revealed no malignancy. RPILD and acute respiratory distress syndrome (ARDS) developed after anti-infection and steroid hormone therapy. After mechanical support therapy such as Extracorporeal Membrane Oxygenation (ECMO), the patient developed late-onset cytomegalovirus pneumonia (CMVP), complicated bacterial infection, and ultimately death. Additionally, we discuss the potential causes of rapid weight loss, the mechanisms by which anti-TIF-1γ Ab may lead to ILD, and the possible connection between anti-TIF-1γ Ab positivity, rapid weight loss, immune abnormalities, and opportunistic infections. CONCLUSIONS: This case emphasizes the importance of early recognition of malignant tumors and pulmonary lesions, assessment of the body's immune status, prompt initiation of immunosuppressive treatment, and prevention of opportunistic infections in individuals with single anti-TIF-1γ Ab positive DM presenting with rapid weight loss.


Subject(s)
Dermatomyositis , Lung Diseases, Interstitial , Neoplasms , Opportunistic Infections , Pneumocystis carinii , Pneumonia, Pneumocystis , Male , Humans , Middle Aged , Dermatomyositis/complications , Neoplasms/complications , Autoantibodies , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/diagnosis , Transcription Factors , Pneumonia, Pneumocystis/complications , Pneumonia, Pneumocystis/diagnosis , Opportunistic Infections/complications , Weight Loss , Retrospective Studies
16.
J Cancer ; 14(9): 1553-1561, 2023.
Article in English | MEDLINE | ID: mdl-37325058

ABSTRACT

Background: The incidence of esophagogastric junction adenocarcinoma (EJA) patients was increasing but their prognoses were poor. Blood-based predictive biomarkers were associated with prognosis. This study was to build a nomogram based on preoperative clinical laboratory blood biomarkers for predicting prognosis in curatively resected EJA. Methods: Curatively resected EJA patients, recruited between 2003 and 2017 in the Cancer Hospital of Shantou University Medical College, were divided chronologically into the training (n=465) and validation groups (n=289). Fifty markers, involving sociodemographic characteristics and preoperative clinical laboratory blood indicators, were screened for nomogram construction. Independent predictive factors were selected using Cox regression analysis and then were combined to build a nomogram to predict overall survival (OS). Results: Composed of 12 factors, including age, body mass index, platelets, aspartate aminotransferase-to-alanine transaminase ratio, alkaline phosphatase, albumin, uric acid, IgA, IgG, complement C3, complement factor B and systemic immune-inflammation index, we constructed a novel nomogram for OS prediction. In the training group, when combined with TNM system, it acquired a C-index of 0.71, better than using TNM system only (C-index: 0.62, p < 0.001). When applied in the validation group, the combined C-index was 0.70, also better than using TNM system (C-index: 0.62, p < 0.001). Calibration curves exhibited that the nomogram-predicted probabilities of 5-year OS were both in consistency with the actual 5-year OS in both groups. Kaplan-Meier analysis exhibited that patients with higher nomogram scores contained poorer 5-year OS than those with lower scores (p < 0.0001). Conclusions: In conclusion, the novel nomogram built based on preoperative blood indicators might be the potential prognosis prediction model of curatively resected EJA.

17.
bioRxiv ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37293078

ABSTRACT

Alanyl-transfer RNA synthetase 2 (AARS2) is a nuclear encoded mitochondrial tRNA synthetase that is responsible for charging of tRNA-Ala with alanine during mitochondrial translation. Homozygous or compound heterozygous mutations in the Aars2 gene, including those affecting its splicing, are linked to infantile cardiomyopathy in humans. However, how Aars2 regulates heart development, and the underlying molecular mechanism of heart disease remains unknown. Here, we found that poly(rC) binding protein 1 (PCBP1) interacts with the Aars2 transcript to mediate its alternative splicing and is critical for the expression and function of Aars2. Cardiomyocyte-specific deletion of Pcbp1 in mice resulted in defects in heart development that are reminiscent of human congenital cardiac defects, including noncompaction cardiomyopathy and a disruption of the cardiomyocyte maturation trajectory. Loss of Pcbp1 led to an aberrant alternative splicing and a premature termination of Aars2 in cardiomyocytes. Additionally, Aars2 mutant mice with exon-16 skipping recapitulated heart developmental defects observed in Pcbp1 mutant mice. Mechanistically, we found dysregulated gene and protein expression of the oxidative phosphorylation pathway in both Pcbp1 and Aars2 mutant hearts; these date provide further evidence that the infantile hypertrophic cardiomyopathy associated with the disorder oxidative phosphorylation defect type 8 (COXPD8) is mediated by Aars2. Our study therefore identifies Pcbp1 and Aars2 as critical regulators of heart development and provides important molecular insights into the role of disruptions in metabolism on congenital heart defects.

18.
Sci Rep ; 13(1): 8525, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37237026

ABSTRACT

Oral tongue squamous cell carcinoma (OTSCC) is one of the most aggressive oral tumors. The aim of this study was to establish a nomogram to predict overall survival (OS) of TSCC patients after surgery. 169 TSCC patients who underwent surgical treatments in the Cancer Hospital of Shantou University Medical College were included. A nomogram based on Cox regression analysis results was established and internally validated using bootstrap resampling method. pTNM stage, age and total protein, immunoglobulin G, factor B and red blood cell count were identified as independent prognostic factors to create the nomogram. The Akaike Information Criterion and Bayesian Information Criterion of the nomogram were lower than those of pTNM stage, indicating a better goodness-of-fit of the nomogram for predicting OS. The bootstrap-corrected concordance index of nomogram was higher than that of pTNM stage (0.794 vs. 0.665, p = 0.0008). The nomogram also had a good calibration and improved overall net benefit. Based on the cutoff value obtained from the nomogram, the proposed high-risk group had poorer OS than low-risk group (p < 0.0001). The nomogram based on nutritional and immune-related indicators represents a promising tool for outcome prediction of surgical OTSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Tongue Neoplasms , Humans , Nomograms , Neoplasm Staging , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Bayes Theorem , Tongue Neoplasms/surgery , Tongue Neoplasms/pathology , Risk Factors , Head and Neck Neoplasms/pathology
19.
Ann Surg Oncol ; 30(8): 5185-5194, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37010663

ABSTRACT

BACKGROUNDS: Preoperative noninvasive tools to predict pretreatment lymph node metastasis (PLNM) status accurately for esophagogastric junction adenocarcinoma (EJA) are few. Thus, the authors aimed to construct a nomogram for predicting PLNM in curatively resected EJA. METHODS: This study enrolled 638 EJA patients who received curative surgery resection and divided them randomly (7:3) into training and validation groups. For nomogram construction, 26 candidate parameters involving 21 preoperative clinical laboratory blood nutrition-related indicators, computed tomography (CT)-reported tumor size, CT-reported PLNM, gender, age, and body mass index were screened. RESULTS: In the training group, Lasso regression included nine nutrition-related blood indicators in the PLNM-prediction nomogram. The PLNM prediction nomogram yielded an area under the receiver operating characteristic (ROC) curve of 0.741 (95 % confidence interval [CI], 0.697-0.781), which was better than that of the CT-reported PLNM (0.635; 95% CI 0.588-0.680; p < 0.0001). Application of the nomogram in the validation cohort still gave good discrimination (0.725 [95% CI 0.658-0.785] vs 0.634 [95% CI 0.563-0.700]; p = 0.0042). Good calibration and a net benefit were observed in both groups. CONCLUSIONS: This study presented a nomogram incorporating preoperative nutrition-related blood indicators and CT imaging features that might be used as a convenient tool to facilitate the preoperative individualized prediction of PLNM for patients with curatively resected EJA.


Subject(s)
Adenocarcinoma , Nomograms , Humans , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/surgery , Esophagogastric Junction/diagnostic imaging , Esophagogastric Junction/surgery , Lymphatic Metastasis , Tomography, X-Ray Computed/methods
20.
Genes (Basel) ; 14(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36980921

ABSTRACT

Mutation rate is a crucial parameter in evolutionary genetics. However, the mutation rate of most species as well as the extent to which the environment can alter the genome of multicellular organisms remain poorly understood. Here, we used parents-progeny sequencing to investigate the mutation rate and spectrum of the domestic silkworm (Bombyx mori) among normal and two temperature stress conditions (32 °C and 0 °C). The rate of single-nucleotide mutations in the normal temperature rearing condition was 0.41 × 10-8 (95% confidence interval, 0.33 × 10-8-0.49 × 10-8) per site per generation, which was up to 1.5-fold higher than in four previously studied insects. Moreover, the mutation rates of the silkworm under the stresses are significantly higher than in normal conditions. Furthermore, the mutation rate varies less in gene regions under normal and temperature stresses. Together, these findings expand the known diversity of the mutation rate among eukaryotes but also have implications for evolutionary analysis that assumes a constant mutation rate among species and environments.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Temperature , Mutation Rate , Insecta/genetics , Genome
SELECTION OF CITATIONS
SEARCH DETAIL
...