Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Article in English | MEDLINE | ID: mdl-38687336

ABSTRACT

AIMS: Diabetic heart damage can lead to cardiomyocyte death, which endangers human health. Baicalin (BAI) is a bioactive compound that plays an important role in cardiovascular diseases. Sentrin/SUMO-specific protease 1 (SENP1) regulates the de-small ubiquitin-like modifier (deSUMOylation) process of Sirtuin 3 (SIRT3) and plays a crucial role in regulating mitochondrial mass and preventing cell injury. Our hypothesis is that BAI regulates the deSUMOylation level of SIRT3 through SENP1 to enhance mitochondrial quality control and prevent cell death, ultimately improving diabetic cardiomyopathy (DCM). RESULTS: The protein expression of SENP1 decreased in cardiomyocytes induced by high glucose and in db/db mice. The cardioprotective effects of BAI were eliminated by silencing endogenous SENP1, while overexpression of SENP1 showed similar cardioprotective effects to those of BAI. Furthermore, Co-Immunoprecipitation (CO-IP) experiments showed that BAI's cardioprotective effect was due to the inhibition of the SUMOylation modification level of SIRT3 by SENP1. Inhibition of SENP1 expression resulted in an increase in SUMOylation of SIRT3. This led to increased acetylation of mitochondrial protein, accumulation of reactive oxygen species, impaired autophagy, impaired mitochondrial oxidative phosphorylation and increased cell death. None of these changes could be reversed by BAI. CONCLUSION: BAI improves DCM by promoting SIRT3 deSUMOylation through SENP1, restoring mitochondrial stability, and preventing the cell death of cardiomyocytes. INNOVATION: This study proposes for the first time that SIRT3 SUMOylation modification is involved in the development of DCM, provides in vivo and in vitro data support that BAI inhibits cardiomyocyte ferroptosis and apoptosis in DCM through SENP1.

2.
Am J Physiol Cell Physiol ; 326(3): C724-C741, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38223927

ABSTRACT

Diabetic cardiomyopathy (DCM) is closely related to ferroptosis, a new type of cell death that mainly manifests as intracellular iron accumulation and lipid peroxidation. Paeoniflorin (PA) helps to improve impaired glucose tolerance, influences the distribution of the intestinal flora, and induces significant resistance to ferroptosis in several models. In this study, we found that PA improved cardiac dysfunction in mice with DCM by alleviating myocardial damage, resisting oxidative stress and ferroptosis, and changing the community composition and structure of the intestinal microbiota. Metabolomics analysis revealed that PA-treated fecal microbiota transplantation affected metabolites in DCM mice. Based on in vivo and in vitro experiments, 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor that mediates the cardioprotective and antiferroptotic effects of PA-treated fecal microbiota transplantation (FMT) in DCM mice.NEW & NOTEWORTHY This study demonstrated for the first time that paeoniflorin (PA) exerts protective effects in diabetic cardiomyopathy mice by alleviating myocardial damage, resisting ferroptosis, and changing the community composition and structure of the intestinal microbiota, and 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor in its therapeutic efficacy.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Ferroptosis , Gastrointestinal Microbiome , Glucosides , Monoterpenes , Animals , Mice , Diabetic Cardiomyopathies/drug therapy , Myocardium
3.
Am J Physiol Cell Physiol ; 326(1): C161-C176, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38009195

ABSTRACT

The relationship between gut microbiota and doxorubicin-induced cardiotoxicity (DIC) is becoming increasingly clear. Emodin (EMO), a naturally occurring anthraquinone, exerts cardioprotective effects and plays a protective role by regulating gut microbiota composition. Therefore, the protective effect of EMO against DIC injury and its underlying mechanisms are worth investigating. In this study, we analyzed the differences in the gut microbiota in recipient mice transplanted with different flora using 16S-rDNA sequencing, analyzed the differences in serum metabolites among groups of mice using a nontargeted gas chromatography-mass spectrometry coupling system, and assessed cardiac function based on cardiac morphological staining, cardiac injury markers, and ferroptosis indicator assays. We found EMO ameliorated DIC and ferroptosis, as evidenced by decreased myocardial fibrosis, cardiomyocyte hypertrophy, and myocardial disorganization; improved ferroptosis indicators; and the maintenance of normal mitochondrial morphology. The protective effect of EMO was eliminated by the scavenging effect of antibiotics on the gut microbiota. Through fecal microbiota transplantation (FMT), we found that EMO restored the gut microbiota disrupted by doxorubicin (DOX) to near-normal levels. This was evidenced by an increased proportion of Bacteroidota and a decreased proportion of Verrucomicrobiota. FMT resulted in changes in the composition of serum metabolites. Mice transplanted with EMO-improved gut microbiota showed better cardiac function and ferroptosis indices; however, these beneficial effects were not observed in Nrf2 (Nfe2l2)-/- mice. Overall, EMO exerted a protective effect against DIC by attenuating ferroptosis, and the above effects occurred by remodeling the composition of gut microbiota perturbed by DOX and required Nrf2 mediation.NEW & NOTEWORTHY This study demonstrated for the first time the protective effect of emodin against DIC and verified by FMT that its cardioprotective effect was achieved by remodeling gut microbiota composition, resulting in attenuation of ferroptosis. Furthermore, we demonstrated that these effects were mediated by the redox-related gene Nrf2.


Subject(s)
Emodin , Ferroptosis , Gastrointestinal Microbiome , Animals , Mice , Emodin/pharmacology , Cardiotoxicity , NF-E2-Related Factor 2/genetics , Doxorubicin/toxicity , Myocytes, Cardiac
4.
Acta Cardiol ; : 1-11, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37961771

ABSTRACT

Conventional pacing systems consist of a pacemaker and one or more leads threaded from the device pocket through veins into the heart conducting the pacing therapy to the desired pacing site. Although these devices are effective, approximately one in eight patients treated with these traditional pacing systems experiences a complication attributed to the pacemaker pocket or leads. With the technological advances in electronics, leadless pacemakers that small enough to implant within the heart were introduced. Leadless pacemakers have been developed to overcome many of the challenges of transvenous pacing including complications related to leads or pacemaker pockets. This review aims to provide an overview of advantages of leadless pacemaker, complications and limitations of leadless pacemaker, leadless pacemaker candidate, and future directions of this promising technology.

5.
Front Cardiovasc Med ; 10: 1149351, 2023.
Article in English | MEDLINE | ID: mdl-37915740

ABSTRACT

Background: Ivabradine improves cardiac function in patients with heart failure, but its effect on dilated cardiomyopathy (DCM) remains unclear. We performed a systematic review and meta-analysis to study the efficacy and potential mechanisms of ivabradine's effect on cardiac function and prognosis in patients with DCM. Methods: We searched PubMed, Cochrane Library, Embase, Web of Science, and four registers through September 28, 2022. All controlled trials of ivabradine for the treatment of DCM with congestive heart failure were included. Articles were limited to English, with the full text and necessary data available. We performed random- or fixed effects meta-analyses for all included outcome measures and compared the effect sizes for outcomes in patients treated with and without ivabradine. The quality of the studies was assessed using the Cochrane risk-of-bias tool for randomized trials (RoB2.0). Findings: Five trials with 357 participants were included. The pooled risk ratio was 0.48 [95% confidence interval (CI) (0.18, 1.25)] for all-cause mortality and 0.38 [95% CI (0.12, 1.23)] for cardiac mortality. The pooled mean difference was -15.95 [95% CI (-19.97, -11.92)] for resting heart rate, 3.96 [95% CI (0.99, 6.93)] for systolic blood pressure, 2.93 [95% CI (2.09, 3.77)] for left ventricular ejection fraction, -5.90 [95% CI (-9.36, -2.44)] for left ventricular end-systolic diameter, -3.41 [95% CI (-5.24, -1.58)] for left ventricular end-diastolic diameter, -0.81 [95% CI (-1.00, -0.62)] for left ventricular end-systolic volume, -0.67 [95% CI (-0.86, -0.48)] for left ventricular end-diastolic volume, -11.01 [95% CI (-19.66, -2.35)] for Minnesota Living with Heart Failure score, and -0.52 [95% CI (-0.73, -0.31)] for New York Heart Association class. Interpretation: Ivabradine reduces heart rate and ventricular volume, and improves cardiac function in patients with DCM, but showed no significant effect on the prognosis of patients.

6.
Biomed Pharmacother ; 168: 115654, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806095

ABSTRACT

Doxorubicin (DOX) is a commonly used chemotherapy drug widely applied in various cancers such as breast cancer, leukemia, and sarcomas. However, its usage is limited by cardiotoxicity. Additionally, the cardiac toxicity of DOX accumulates with dose and duration, making it imperative to identify therapeutic targets for DOX-induced cardiomyopathy (DIC). It has been reported that miRNAs are involved in the progression of DIC. Mir-34a-5p has been identified as an early diagnostic marker for DIC. While studies have shown the involvement of mir-34a-5p in DIC apoptosis, it has not been validated in animal models, nor has the potential improvement of DIC by inhibiting mir-34a-5p been confirmed. Autophagy and pyroptosis are key factors in the development of DIC and can serve as therapeutic targets for its treatment. In this study, we found that mir-34a-5p was upregulated in the heart after DOX treatment and that the inhibition of mir-34-5p reduced autophagy and pyroptosis in DIC. We also found that the inhibition of mir-34a-5p inhibited pyroptosis by regulating autophagy and reducing mitochondrial reactive oxygen species. Moreover, we identified Sirtuin3 (Sirt3) as a target gene of mir-34a-5p using a double-luciferase reporter assay. overexpression Sirt3 reduced pyroptosis by alleviating autophagy. Our research findings suggest that inhibiting mir-34a-5p has a beneficial role in alleviating autophagy and pyroptosis in DIC. This provides therapeutic prospects for treating DIC.


Subject(s)
MicroRNAs , Sirtuin 3 , Animals , AMP-Activated Protein Kinases , Autophagy/genetics , Cardiotoxicity , Doxorubicin/adverse effects , Doxorubicin/pharmacology , MicroRNAs/metabolism , Pyroptosis , Sirtuin 3/genetics
7.
Article in English | MEDLINE | ID: mdl-37756370

ABSTRACT

Aims: The relationship between the gut microbiota and cardiovascular system has been increasingly clarified. Fecal microbiota transplantation (FMT), used to improve gut microbiota, has been applied clinically for disease treatment and has great potential in combating doxorubicin (DOX)-induced cardiotoxicity. However, the application of FMT in the cardiovascular field and its molecular mechanisms are poorly understood. Results: During DOX-induced stress, FMT alters the gut microbiota and serum metabolites, leading to a reduction in cardiac injury. Correlation analysis indicated a close association between serum metabolite indole-3-propionic acid (IPA) and cardiac function. FMT and IPA achieve this by facilitating the translocation of Nfe2l2 (Nrf2) from the cytoplasm to the nucleus, thereby activating the expression of antioxidant molecules, reducing reactive oxygen species production, and inhibiting excessive mitochondrial fission. Consequently, mitochondrial function is preserved, leading to the mitigation of cardiac injury under DOX-induced stress. Innovation: FMT has the ability to modify the composition of the gut microbiota, providing not only protection to the intestinal mucosa but also influencing the generation of serum metabolites and regulating the Nrf2 gene to modulate the balance of cardiac mitochondrial fission and fusion. This study comprehensively demonstrates the efficacy of FMT in countering DOX-induced myocardial damage and elucidates the pathways linking the microbiota and the heart. Conclusion: FMT alters the gut microbiota and serum metabolites of recipient mice, promoting nuclear translocation of Nrf2 and subsequent activation of downstream antioxidant molecule expression, while inhibiting excessive mitochondrial fission to preserve cardiac integrity. Correlation analysis highlights IPA as a key contributor among differentially regulated metabolites.

8.
Cell Biol Toxicol ; 39(6): 2665-2684, 2023 12.
Article in English | MEDLINE | ID: mdl-36746840

ABSTRACT

OBJECTIVES: To evaluate the role and therapeutic value of homocysteine (hcy)-inducible endoplasmic reticulum stress (ERS) protein with ubiquitin like domain 1 (Herpud1) in hcy-induced calcific aortic valve disease (CAVD). BACKGROUND: The morbidity and mortality rates of calcific aortic valve disease (CAVD) remain high while treatment options are limited. METHODS: In vivo, we use the low-density lipoprotein receptor (LDLR) and Herpud1 double knockout (LDLR-/-/Herpud1-/-) mice and used high methionine diet (HMD) to assess of aortic valve calcification lesions, ERS activation, autophagy, and osteogenic differentiation of aortic valve interstitial cells (AVICs). In vitro, the role of Herpud1 in the Hcy-related osteogenic differentiation of AVICs was investigated by manipulating of Herpud1 expression. RESULTS: Herpud1 was highly expressed in calcified human and mouse aortic valves as well as primary aortic valve interstitial cells (AVICs). Hcy increased Herpud1 expression through the ERS pathway and promoted CAVD progression. Herpud1 deficiency inhibited hcy-induced CAVD in vitro and in vivo. Herpud1 silencing activated cell autophagy, which subsequently inhibited hcy-induced osteogenic differentiation of AVICs. ERS inhibitor 4-phenyl butyric acid (4-PBA) significantly attenuated aortic valve calcification in HMD-fed low-density lipoprotein receptor-/- (LDLR-/-) mice by suppressing ERS and subsequent Herpud1 biosynthesis. CONCLUSIONS: These findings identify a previously unknown mechanism of Herpud1 upregulation in Hcy-related CAVD, suggesting that Herpud1 silencing or inhibition is a viable therapeutic strategy for arresting CAVD progression. HIGHLIGHTS: • Herpud1 is upregulated in the leaflets of Hcy-treated mice and patients with CAVD. • In mice, global knockout of Herpud1 alleviates aortic valve calcification and Herpud1 silencing activates cell autophagy, inhibiting osteogenic differentiation of AVICs induced by Hcy. • 4-PBA suppressed Herpud1 expression to alleviate AVIC calcification in Hcy treated AVICs and to mitigate aortic valve calcification in mice.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Humans , Mice , Animals , Aortic Valve/metabolism , Aortic Valve/pathology , Osteogenesis , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Transcription Factors/metabolism , Lipoproteins, LDL/metabolism , Cells, Cultured , Membrane Proteins/metabolism
10.
Sci Rep ; 13(1): 1279, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36690700

ABSTRACT

Doxorubicin (DOX) has a wide antitumor spectrum, but its adverse cardiotoxicity may lead to heart failure. Urotensin II (UII) is the most potent vasoconstrictor in mammals. It plays a role by activating the UII receptor (UT), the orphan G protein-coupled receptor (GPR14), collectively referred to as the UII/UT system. In the new version of "Chinese expert consensus on cardiac rehabilitation of chronic heart failure," it is pointed out that exercise rehabilitation is the cornerstone of cardiac rehabilitation. In this study, in vitro and in vivo assessments were performed using DOX-treated H9C2 cells and rats. It was found that the UT antagonist Urantide and exercise training improved DOX-induced cardiac insufficiency, reduced DOX-induced cardiomyocyte apoptosis, improved the structural disorder of myocardial fibers, and inhibited DOX-induced myocardial fibrosis. Further studies showed that Urantide alleviated DOX-induced cardiotoxicity by downregulating the expression levels of the p38 mitogen-activated protein kinase signaling pathway.


Subject(s)
Cardiotoxicity , Heart Failure , Rats , Animals , Myocytes, Cardiac , Doxorubicin/pharmacology , Heart Failure/chemically induced , Apoptosis , Mammals
11.
Biochem Pharmacol ; 207: 115354, 2023 01.
Article in English | MEDLINE | ID: mdl-36435202

ABSTRACT

Doxorubicin (DOX) is a highly effective and extensively used chemotherapeutic drug but is limited by its cardiotoxicity. In our previous study, we showed that DOX-induced cardiotoxicity (DIC) triggers autophagy and pyroptosis. Sirtuin 3(SIRT3) is an NAD + -dependent deacetylase of the mitochondria that regulates autophagy. However, it is unknown if the protective effects of SIRT3 on DOX-induced cardiotoxicity involve the inhibition of NLRP3 inflammasome activation. In this study, we constructed in vivo and in vitro DIC models to investigate the effects and potential mechanisms of SIRT3 on DIC. We found that the overexpression of SIRT3 remarkably attenuated DIC through inhibition of the NLRP3 inflammasome. Moreover, we found that the overexpression of SIRT3 restored the dynamic balance of autophagosome/autolysosomes by targeting the mTOR/ULK1 signaling pathway. Application of the mTOR agonist MHY1485 further demonstrated that SIRT3 inhibited NLRP3 inflammasome activation by regulating autophagy. Collectively, the results suggest that SIRT3 effectively attenuates the cardiotoxicity of DOX and provides a theoretical foundation for further exploration of DIC.


Subject(s)
Autophagy , Cardiotoxicity , Doxorubicin , Sirtuin 3 , Autophagy/genetics , Autophagy/physiology , Cardiotoxicity/metabolism , Doxorubicin/pharmacology , Doxorubicin/toxicity , Inflammasomes/metabolism , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sirtuin 3/metabolism , TOR Serine-Threonine Kinases/metabolism , Mice , Animals
12.
Front Cardiovasc Med ; 9: 931066, 2022.
Article in English | MEDLINE | ID: mdl-36465455

ABSTRACT

Purpose: Diabetic heart failure (DHF) or cardiomyopathy is a common complication of diabetes; however, the underlying mechanism is not clear. In the present study, the authors searched for differentially expressed genes associated with DHF and the molecular types of immune cells based on bioinformatics. Methods: The RNA expression dataset of DHF was obtained from the NCBI Gene Expression Omnibus (GEO) database. After preprocessing the data, the differentially expressed genes (DEGs) between the DHF group and the non-diabetic heart failure (NHF) group were screened and intersected with immune-related genes (IRGs) in the ImmPort database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the DAVID tool. The ssGSEA algorithm was used to evaluate immune infiltration of the heart tissue in each group. In addition, the protein-protein interaction (PPI) network and miRNA-mRNA network were constructed using the STRING online website and Cytoscape program. Finally, validation analysis was performed using animal models. Results: Eight immune-related core genes were identified. GO and KEGG showed that core genes were mainly enriched in angiogenesis and cytokine-cytokine receptor interaction. Immune infiltration results showed that activated dendritic cells, central memory CD4 T cells, central memory CD8 T cells, myeloid-derived suppressor cells (MDSCs), neutrophils, and regulatory T cells may be involved in DHF. Neutrophils may play a key role in the pathogenesis of HF in diabetes. Conclusion: Immune-related core genes and immune infiltrating cells provide a new perspective on the pathogenesis of DHF.

13.
Front Cardiovasc Med ; 9: 1025558, 2022.
Article in English | MEDLINE | ID: mdl-36426231

ABSTRACT

Background: Chronic endoplasmic reticulum stress (ERS) plays a crucial role in cardiovascular diseases. Thus, it can be considered a therapeutic target for these diseases. In this study, poly (D,L-lactic acid) (PDLLA) nanoparticle-eluting stents loaded with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, was fabricated to assess their ability to reduce endothelial cell apoptosis and promote re-endothelialization after stent implantation. Materials and methods: PDLLA nanoparticles loaded with TUDCA were prepared via the emulsification-solvent evaporation method. The cumulative release rates of TUDCA were measured in vitro via high-performance liquid chromatography. The carotid arteries of rabbits were subsequently implanted with stents in vivo. The rabbits were then sacrificed after 4 weeks for scanning electron microscopy. Meanwhile, TUDCA concentration in the homogenate of the peripheral blood and distal vascular tissue after stent implantation was measured. The effect of TUDCA on ERS, apoptosis, and human umbilical vein endothelial cell (HUVEC) function was investigated in vitro by performing cell migration assay, wound healing assay, cell proliferation assays, endoplasmic reticulum (ER)-specific fluorescence staining, immunofluorescence, and western blotting. Results: TUDCA nanoparticles were released slowly over 28 days. In addition, TUDCA-eluting stents enhanced re-endothelialization and accelerated the recovery of endotheliocytes in vivo. ERS and apoptosis significantly increased in H2O2-treated HUVECs in vitro. Meanwhile, TUDCA reduced apoptosis and improved function by inhibiting ERS in H2O2-treated HUVECs. Decreased rates of apoptosis and ERS were observed after silencing XBP-1s in H2O2-treated HUVECs. Conclusion: TUDCA can inhibit apoptosis and promote re-endothelialization after stent implantation by inhibiting IRE/XBP1s-related ERS. These results indicate the potential therapeutic application of TUDCA as a drug-coated stent.

14.
Front Cardiovasc Med ; 9: 940663, 2022.
Article in English | MEDLINE | ID: mdl-36186976

ABSTRACT

Background: Dietary polyphenols, polypeptides, and oligosaccharides modulate inflammation and immunity by altering the composition of gut microbiota. The polyphenols and polypeptides in Chinese rice wine have protective effects against cardiovascular disease. In this study, we hypothesized that the polyphenols, polypeptides, and oligosaccharides in Chinese rice wine can ameliorate diabetic cardiomyopathy (DCM) by altering gut microbiota and metabolites. Methods: Mice with DCM and high glucose cells were treated with rice wine polyphenols (RWPH), rice wine polypeptides (RWPE), and rice wine oligosaccharides. Cardiac function was evaluated by echocardiography and detection of myocardial injury markers. We observed the pathological structures using hematoxylin and eosin staining, Masson's trichrome staining, and transmission electron microscopy. The expression levels of autophagy-related proteins and stubRFP-sensGFP-LC3 fluorescence were measured to evaluate autophagy. We performed TUNEL staining and measured the levels of Bax, Bcl-2, and p53 to assess apoptosis. To analyze the effects of the rice wine functional components on the gut microbiota and metabolites of DCM mice, we performed fecal 16S-rDNA gene sequencing and serum untargeted metabolomics. Results: Our results showed an increase in cardiac and mitochondrial function, promotion of autophagy, and inhibition of cardiomyocyte apoptosis, which indicates that RWPH and RWPE can ameliorate DCM. The abundance of Akkermansia and Desulfovibrio were reduced by the presence of RWPH and RWPE. The growth of the Lachnospiraceae_NK4A136_group and Clostridiales-unclassified were promoted by the presence of RWPH. Tryptophan metabolism-associated metabolites were increased and phenylalanine levels were reduced by the presence of RWPH and RWPE. The biosynthesis of primary bile acids was enhanced by the presence of RWPH. Conclusion: Both RWPH and RWPE provided a protective effect against DCM by promoting autophagy, inhibiting apoptosis, and reversing both gut microbiota dysbiosis and metabolic dysregulation.

15.
Front Public Health ; 10: 947204, 2022.
Article in English | MEDLINE | ID: mdl-36148336

ABSTRACT

Background: In recent years, the prevalence of type 2 diabetes mellitus (T2DM) has increased annually. The major complication of T2DM is cardiovascular disease (CVD). CVD is the main cause of death in T2DM patients, particularly those with comorbid acute coronary syndrome (ACS). Although risk prediction models using multivariate logistic regression are available to assess the probability of new-onset ACS development in T2DM patients, none have been established using machine learning (ML). Methods: Between January 2019 and January 2020, we enrolled 521 T2DM patients with new-onset ACS or no ACS from our institution's medical information recording system and divided them into a training dataset and a testing dataset. Seven ML algorithms were used to establish models to assess the probability of ACS coupled with 5-cross validation. Results: We established a nomogram to assess the probability of newly diagnosed ACS in T2DM patients with an area under the curve (AUC) of 0.80 in the testing dataset and identified some key features: family history of CVD, history of smoking and drinking, aspartate aminotransferase level, age, neutrophil count, and Killip grade, which accelerated the development of ACS in patients with T2DM. The AUC values of the seven ML models were 0.70-0.96, and random forest model had the best performance (accuracy, 0.89; AUC, 0.96; recall, 0.83; precision, 0.91; F1 score, 0.87). Conclusion: ML algorithms, especially random forest model (AUC, 0.961), had higher performance than conventional logistic regression (AUC, 0.801) for assessing new-onset ACS probability in T2DM patients with excellent clinical and diagnostic value.


Subject(s)
Acute Coronary Syndrome , Diabetes Mellitus, Type 2 , Acute Coronary Syndrome/complications , Acute Coronary Syndrome/diagnosis , Algorithms , Aspartate Aminotransferases , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Humans , Machine Learning , Retrospective Studies
16.
Toxicol Appl Pharmacol ; 452: 116179, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35914558

ABSTRACT

Doxorubicin (DOX) is a potent anthracycline antineoplastic drug. However, its dose-dependent cardiotoxicity limits its clinical application. Ononin is a natural isoflavone glycoside that is crucial in modulating apoptosis-related signaling pathways. In this study, we assessed the possible cardioprotective effects of ononin in DOX-induced cardiotoxicity and elucidated the underlying molecular mechanisms. In vitro and in vivo assessments were performed using DOX-treated H9C2 cells and rats, respectively. First, DOX was injected into the tail veins of Wistar rats to induce cardiomyopathy. Next, rats in the DOX + Ononin30 and DOX + Ononin60 groups were intragastrically administered ononin two weeks before DOX treatment. H9C2 cells were treated with vehicle or DOX with or without ononin. Next, 3-TYP was used to determine the relationship between endoplasmic reticulum (ER) stress and sirtuin 3 (SIRT3) expression. Ononin treatment ameliorated DOX-induced myocardial injury as determined by echocardiography. Furthermore, ononin partially restored DOX-induced cardiac dysfunction; the left ventricular ejection fraction (LVEF) and left ventricular systolic fractional shortening (LVFS) increased after pre-treatment with ononin. Further, ononin suppressed DOX-induced ER stress and apoptosis in rat cardiomyocytes and H9C2 cells. The Bax/Bcl-2 ratio and 78-kD glucose-regulated protein (GRP78) and CCAAT enhancer-binding protein (CHOP) expression levels were higher in the DOX-treated group than in the control group but ononin treatment improved these parameters. These effects are associated with SIRT3 activity. Moreover, 3-TYP blocked the ononin-mediated protective effects. Hence, ononin positively affected DOX-induced cardiotoxicity by inhibiting ER stress and apoptosis, possibly mediated by stimulation of the SIRT3 pathway.


Subject(s)
Isoflavones , Sirtuin 3 , Animals , Apoptosis , Cardiotoxicity/metabolism , Doxorubicin/pharmacology , Endoplasmic Reticulum Stress , Glucosides , Isoflavones/pharmacology , Myocytes, Cardiac , Oxidative Stress , Rats , Rats, Wistar , Sirtuin 3/metabolism , Stroke Volume , Ventricular Function, Left
17.
Front Neurol ; 13: 903789, 2022.
Article in English | MEDLINE | ID: mdl-35756923

ABSTRACT

Background: The high prevalence of patent foramen ovale (PFO) in cryptogenic stroke suggested a stroke-causing role for PFO. As risk factors for recurrence of such stroke are not recognized, clinicians cannot sufficiently identify, treat, and follow-up high-risk patients. Therefore, this study aimed to establish a prediction model for PFO-related stroke recurrence. Methods: This study included 392 patients with PFO-related stroke in a training set and 164 patients with PFO-related stroke in an independent validation set. In the training set, independent risk factors for recurrence identified using forward stepwise Cox regression were included in nomogram 1, and those identified using least absolute shrinkage and selection operator(LASSO)regression were included in nomogram 2. Nomogram performance and discrimination were assessed using the concordance index (C-index), area under the curve (AUC), calibration curve, and decision curve analyses (DCA). The results were also validated in the validation set. Results: Nomogram 1 was based on homocysteine (Hcy), high-sensitivity C-reactive protein (hsCRP), and albumin (ALB), and nomogram 2 was based on age, diabetes, hypertension, right-to-left shunt, ALB, prealbumin, hsCRP, and Hcy. The C-index of nomogram 1 was 0.861, which was not significantly different from that of nomogram 2 (0.893). The 2- and 5-year AUCs of nomogram 1 were 0.863 and 0.777, respectively. In the validation set, nomogram 1 still had good discrimination (C-index, 0.862; 2-year AUC, 0.839; 5-year AUC, 0.990). The calibration curve showed good homogeneity between the prediction by nomogram 1 and the actual observation. DCA demonstrated that nomogram 1 was clinically useful. Moreover, patients were successfully divided into two distinct risk groups (low and high risk) for recurrence rate by nomogram 1. Conclusions: Nomogram 1, based on Hcy, hsCRP, and ALB levels, provided a more clinically realistic prognostic prediction for patients with PFO-related stroke. This model could help patients with PFO-related stroke to facilitate personalized prognostic evaluations.

18.
Oxid Med Cell Longev ; 2022: 4610522, 2022.
Article in English | MEDLINE | ID: mdl-35281465

ABSTRACT

Objectives: We conducted a meta-analysis to quantitatively evaluate the effect of melatonin therapy on patients with myocardial ischemia-reperfusion injury (MIRI) and explore the influencing factors. Background: Although preclinical studies have shown that melatonin can alleviate MIRI, its protective effect on MIRI in patients remains controversial. Methods: We searched PubMed, the Cochrane Library, and Embase. The primary outcome was cardiac function (left ventricular ejection fraction [LVEF], left ventricular end-diastolic volume [LVEDV], and left ventricular end-systolic volume [LVESV]) and myocardial infarct parameters (total left ventricular mass and infarct size). Results: We included nine randomized controlled clinical trials with 631 subjects. Our results showed that melatonin had no significant effects on the primary outcome, but subgroup analyses indicated that when melatonin was administered by intravenous and intracoronary injection at the early stage of myocardial ischemia, LVEF was improved (<3.5 h; standardized mean difference [SMD]:0.50; 95% CI: 0.06 to 0.94; P = 0.03) and the infarct size was reduced (<2.5 h, SMD: -0.86; 95% CI: -1.51 to -0.22; P = 0.01), whereas when melatonin was injected at the late stage of myocardial ischemia (≥3.5 h or 2.5 h), the results were the opposite. Furthermore, melatonin intervention reduced the level of cardiac injury markers, inflammatory cytokines, oxidation factors, and increased the level of antioxidant factors (P < 0.001). Conclusions: The results indicated that the cardioprotective function of melatonin for MIRI was influenced by the route and timing regimen of melatonin administration; the mechanism of which may be associated with the production of inflammatory cytokines, the balance of oxidation, and antioxidant factors.


Subject(s)
Antioxidants/therapeutic use , Melatonin/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Antioxidants/pharmacology , Female , Humans , Male , Melatonin/pharmacology , Middle Aged
19.
Circ Heart Fail ; 14(10): e008220, 2021 10.
Article in English | MEDLINE | ID: mdl-34665676

ABSTRACT

BACKGROUND: Dietary polyphenols help to prevent cardiovascular diseases, and interactions between polyphenols and gut microbiota are known to exist. In this study, we speculated that gut microbiota-mediated metabolite regulation might contribute to the anticardiotoxic effects of yellow wine polyphenolic compound (YWPC) in doxorubicin (DOX)-treated rats. METHODS: 16S-rDNA sequencing was performed to analyze the effects of YWPC on the gut microbiota in DOX-treated rats (n=6). Antibiotics were used to investigate the contribution of the altered microbiome to the role of YWPC (n=6). Plasma metabolomics were also analyzed by untargeted gas chromatography-mass spectrometry systems. RESULTS: YWPC ameliorated DOX-mediated cardiotoxicity, as evidenced by increased cardiac and mitochondrial function and reduced levels of inflammation and myocardial apoptosis (P<0.05 for all). The low abundance of Escherichia-Shigella, Dubosiella, and Allobaculum, along with enrichment of Muribaculaceae_unclassified, Ralstonia, and Rikenellaceae_RC9_gut_group in the gut, suggested that YWPC ameliorated DOX-induced microbial dysbiosis. YWPC also influenced the levels of metabolites altered by DOX, resulting in lower arachidonic acid and linoleic acid metabolism and higher tryptophan metabolite levels (P<0.05 for all). Correlational studies indicated that YWPC alleviated DOX-induced inflammation and mitochondrial dysfunction by modulating the gut microbial community and its associated metabolites. Antibiotic treatment exacerbated cardiotoxicity in DOX-treated rats, and its effect on the gut microbiota partly abolished the anticardiotoxic effects of YWPC, suggesting that the microbiota is required for the cardioprotective role of YWPC. CONCLUSIONS: YWPC protected against DOX-induced cardiotoxicity in a gut microbiota-dependent manner. This supports the use of dietary polyphenols as a therapeutic approach for the treatment of cardiovascular diseases via microbiota regulation.


Subject(s)
Cardiotoxicity/drug therapy , Doxorubicin/pharmacology , Gastrointestinal Microbiome/drug effects , Heart Failure/drug therapy , Mitochondria/drug effects , Wine/adverse effects , Animals , Apoptosis/drug effects , Cardiotoxicity/metabolism , Gastrointestinal Microbiome/genetics , Heart/drug effects , Heart Failure/metabolism , Male , Myocardium/metabolism , Rats, Sprague-Dawley
20.
Front Pharmacol ; 12: 700366, 2021.
Article in English | MEDLINE | ID: mdl-34248645

ABSTRACT

Background: Cardiac fibroblast (CF) activation is a hallmark feature of cardiac fibrosis in diabetic cardiomyopathy (DCM). Inhibition of the sodium-dependent glucose transporter 1 (SGLT1) attenuates cardiomyocyte apoptosis and delays the development of DCM. However, the role of SGLT1 in CF activation remains unclear. Methods: A rat model of DCM was established and treated with si-SGLT1 to examine cardiac fibrosis. In addition, in vitro experiments were conducted to verify the regulatory role of SGLT1 in proliferation and collagen secretion in high-glucose- (HG-) treated CFs. Results: SGLT1 was found to be upregulated in diabetic cardiac tissues and HG-induced CFs. HG stimulation resulted in increased proliferation and migration, increased the expression of transforming growth factor-ß1 and collagen I and collagen III, and increased phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK) 1/2. These trends in HG-treated CFs were significantly reversed by si-SGLT1. Moreover, the overexpression of SGLT1 promoted CF proliferation and collagen synthesis and increased phosphorylation of p38 mitogen-activated protein kinase and ERK1/2. SGLT1 silencing significantly alleviated cardiac fibrosis, but had no effect on cardiac hypertrophy in diabetic hearts. Conclusion: These findings provide new information on the role of SGLT1 in CF activation, suggesting a novel therapeutic strategy for the treatment of DCM fibrosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...