Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 878-886, 2023 May.
Article in English | MEDLINE | ID: mdl-36575591

ABSTRACT

ß-alanine has been demonstrated to improve carcass traits and meat quality of animals. However, no research has been found on the effects of dietary ß-alanine in the meat quality control of finishing pigs, which are among the research focus. Therefore, this study aimed to evaluate the effects of dietary ß-alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity of Chinese indigenous Ningxiang pigs. The treatments contained a basal diet (control, CON) and a basal diet supplemented with 600 mg/kg ß-alanine. Each treatment group consisted of five pens, with five pigs per pen. Results showed that compared with CON, supplemental ß-alanine did not affect the final body weight, average daily gain, average daily feed intake and the feed-to-gain ratio of pigs. Dietary ß-alanine supplementation tended to increase the pH45 min (p = 0.071) while decreasing the shear force (p = 0.085) and the drip loss (p = 0.091). Moreover, it improved (p < 0.05) the activities of glutathione peroxidase and catalase and lessened (p < 0.05) malondialdehyde concentration. Added ß-alanine in diets of finishing pigs could enhance the concentrations of arginine, alanine, and glutamate (p < 0.05) in the longissimus dorsi muscle and tended to raise the levels of cysteine, glycine and anserine (p = 0.060, p = 0.098 and p = 0.091 respectively). Taken together, our results showed that dietary ß-alanine supplementation contributed to the improvement of the carcass traits, meat quality and anserine content, the amelioration of muscle antioxidant capacity and the regulation of amino acid composition in Chinese indigenous Ningxiang pigs.


Subject(s)
Antioxidants , Carnosine , Swine , Animals , Antioxidants/metabolism , Amino Acids/metabolism , Carnosine/metabolism , Carnosine/pharmacology , Anserine/metabolism , Anserine/pharmacology , Dietary Supplements , Diet/veterinary , Meat/analysis , beta-Alanine/pharmacology , beta-Alanine/metabolism , Animal Feed/analysis , Body Composition
2.
Sheng Wu Gong Cheng Xue Bao ; 38(11): 4329-4334, 2022 Nov 25.
Article in Chinese | MEDLINE | ID: mdl-37699692

ABSTRACT

Traditionally, amino acids are produced mainly by chemical synthesis or aerobic fermentation. Compared to chemical synthesis, production of amino acids by microbial fermentation directly uses renewable resources as feedstock and this reduces the dependence on petroleum-based compounds and decreases pollutants generation and toxic substrates usage. Fermentation under aerobic conditions has been used widely for its fast growth and high titers. However, a large amount of carbon is used for cell growth and this results in high biomass but low yield of target chemicals. Unlike the long history of aerobic fermentation, the commercial production of amino acids by anaerobic fermentation is realized only in recent years. It has several advantages such as simpler operation, no need for oxygen supply, and high yield close to the theoretical maximum value. L-alanine is the first amino acid commercially produced by anaerobic fermentation. In this article, we summarize the key technology for anaerobic fermentative production of L-alanine and its commercialization. As it is shown to be low-cost, high-efficiency, and environmental-friendly, anaerobic fermentation is expected to be widely used in industrial process and brings greater economic values and social benefits in the future.


Subject(s)
Alanine , Amino Acids , Anaerobiosis , Fermentation , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...