Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 115: 154811, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37094421

ABSTRACT

BACKGROUND: Proteoglycans (PGs) accumulation and inflammation are two interactional pathological processes of atherosclerosis (AS). Up to now, there is no ideal drug for decreasing these pathological changes. Gua Lou Er Chen decoction (GED) has been used to treat AS for several years. However, if GED could treat AS through reducing PGs accumulation and inflammation remains unknown. PURPOSE: This study was designed to illustrate whether GED could attenuate AS by reducing chondroitin sulphate proteoglycan (CSPG) expressions and alleviating inflammation. METHODS: In vivo study, apolipoprotein E-deficient mice were fed a high-fat diet to induce AS. In vitro study, oxidised low-density lipoprotein (ox-LDL) and tumour necrosis factor (TNF)-α were used to induce proteoglycans accumulation and inflammation changes of vascular smooth muscle cells (VSMCs) and RAW264.7 macrophages. Oil Red O was used to stain mouse aortic lipid plaque. Haematoxylin eosin staining was used to assess the pathological changes of aortic valve and thoracic aorta. Specialised kits were used to identify blood lipids and sGAGs. Immunofluorescence and immunohistochemistry was used to identify aortic valve CSPG and versican. Western blotting, enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction were used to measure versican, interleukin (IL)-6, TNF-α, and chondroitin sulphate (CS) synthetase expressions. CCK-8 was used to measure the cells proliferation. RESULTS: In vivo experiments revealed that GED significantly improved hyperlipidemia, lowered lipid plaque deposition in the aorta, and increased plaque stability of AS mice. In addition, further studies revealed that GED lowered the sGAGs, CSPG, and versican levels and down-regulated CS synthetase and inflammatory factor expressions. In vitro experiments revealed that GED decreased TNF-α expression in the RAW264.7 macrophage supernatant stimulated by ox-LDL; decreased versican, CS-related synthetase, and IL-6 expressions; reduced VSMC proliferation stimulated by ox-LDL; down-regulated sGAG and versican expressions of VSMCs stimulated by TNF-α. CONCLUSION: Our results demonstrated that GED could attenuate AS by reducing hyperlipidemia, hyper-expression of CSPG, and inflammation. This study might provide a novel insight into the development of innovative drug for AS.


Subject(s)
Atherosclerosis , Hyperlipidemias , Plaque, Atherosclerotic , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Versicans , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Plaque, Atherosclerotic/drug therapy , Inflammation/drug therapy , Inflammation/metabolism , Lipoproteins, LDL , Interleukin-6 , Lipids , Hyperlipidemias/drug therapy
2.
Front Cell Infect Microbiol ; 11: 657807, 2021.
Article in English | MEDLINE | ID: mdl-34568080

ABSTRACT

It is known that the microbiome affects human physiology, emotion, disease, growth, and development. Most humans exhibit reduced appetites under high temperature and high humidity (HTHH) conditions, and HTHH environments favor fungal growth. Therefore, we hypothesized that the colonic mycobiota may affect the host's appetite under HTHH conditions. Changes in humidity are also associated with autoimmune diseases. In the current study mice were fed in an HTHH environment (32°C ± 2°C, relative humidity 95%) maintained via an artificial climate box for 8 hours per day for 21 days. Food intake, the colonic fungal microbiome, the feces metabolome, and appetite regulators were monitored. Components of the interleukin 17 pathway were also examined. In the experimental groups food intake and body weight were reduced, and the colonic mycobiota and fecal metabolome were substantially altered compared to control groups maintained at 25°C ± 2°C and relative humidity 65%. The appetite-related proteins LEPT and POMC were upregulated in the hypothalamus (p < 0.05), and NYP gene expression was downregulated (p < 0.05). The expression levels of PYY and O-linked ß-N-acetylglucosamine were altered in colonic tissues (p < 0.05), and interleukin 17 expression was upregulated in the colon. There was a strong correlation between colonic fungus and sugar metabolism. In fimo some metabolites of cholesterol, tromethamine, and cadaverine were significantly increased. There was significant elevation of the characteristic fungi Solicoccozyma aeria, and associated appetite suppression and interleukin 17 receptor signaling activation in some susceptible hosts, and disturbance of gut bacteria and fungi. The results indicate that the gut mycobiota plays an important role in the hypothalamus endocrine system with respect to appetite regulation via the gut-brain axis, and also plays an indispensable role in the stability of the gut microbiome and immunity. The mechanisms involved in these associations require extensive further studies.


Subject(s)
Dysbiosis , Receptors, Interleukin-17 , Animals , Appetite , Appetite Regulation , Basidiomycota , Colon , Humidity , Mice , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...